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Abstract

This study focuses on simulating hunting and foraging behaviors in evolved robots. The
experiments sought to investigate the influence of role awareness, overall agent speed, speed
advantage and gradual consumption on hunting and foraging behaviors. Our goal was to observe
the conditions which foster the predator’s success in capturing prey along with prey’s in
consuming food and evading predators. Our agents use artificial neural networks trained using
the NeuroEvolution of Augmenting Topologies (NEAT) algorithm. This approach allows our
agents to evolve unique behaviors involving evasive movement patterns, cornering prey, staying
out of bound and circling stationary food. The experiment was evaluated through aggregated data
analysis on the total stationary food consumed by prey, the total prey hunted per generation and
the total ticks out of bound. The experiments revealed that role awareness had a minimal impact
on agent performance, with enabling it resulting in a slight performance decrease. Our findings
suggest that predator agents are most successful at capturing prey when maintaining equal speeds
between these two roles of agents emerged, as any speed advantage granted to one type of agent
enhanced their respective roles but disrupted the balance between them. When it comes to the
overall speed, the fastest option is not the most optimal choice. Rather, a moderate value proves
to be more effective. High speed causes both agents to go out of bound more frequently, while a
low speed leads to poor food consumption. Additionally, changing the ticks for full food
consumption mainly benefits prey with them eating more. While for predators, the performance
does not show improvement despite the extended presence of prey in the area where food is

spawned.



1 Intro

Evolutionary robotics 1s a growing field that harnesses the power of natural selection to
develop complex behaviors. In this paper, the simulation focuses on demonstrating the
effectiveness of evolutionary robotics in developing hunting and foraging behaviors within a
simplified and controlled environment. To achieve this, we used the Neural Evolution of
Augmenting Topologies (NEAT) algorithm to develop neural network topologies and fine-tune
their weights.

The selection of appropriate parameters is an important aspect of evolutionary robotics.
Well chosen settings can result in the production of high quality agents. This study focuses on the
significance of agent and environmental parameter choices in shaping the outcomes of
evolutionary robotics experiments. Specifically, our experiment aims to investigate the influence
on agent performance by key factors, including role awareness, overall agent speed, speed
differentials between two roles of predator and prey agents along with partial consumption of
stationary food. For prey agents, performance is evaluated based on their ability to efficiently
consume food while evading predators, while the effectiveness of predators is measured by their
hunting capabilities. Through systematic exploration of these parameters, we aim to uncover
optimal configurations that yield desirable outcomes in evolutionary robotics. The findings of

this study will provide valuable insights for designing and fine-tuning future robotic systems.



2 Model (Methodology)

2.1 Agent

An agent is represented by a circular shape with a radius r = 7.5 pixels, and its direction

a
of movement is determined by an angle (measured in radians). Each agent is equipped with Rw

=1
two wheels on either side, each having a radius . The movement of the agent is governed by
the kinematic physics model designed for differential drive robots. The power p provided to the
wheels is directly controlled by the output nodes of the artificial neural network (ANN), ranging
from -5 to 5. The power values for the left and right wheels are denoted as p;and p,,

v=[vev]
respectively. The resulting motion of the agent is determined by the vector velocity

generated by these wheel powers.
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2.1.1 Predator and Prey Role Assignment:



Agents are categorized into two roles: predator and prey, which significantly impact their
energy acquisition methodology. Prey agents are solely capable of consuming stationary food
sources to replenish their energy levels. In contrast, predators cannot derive energy from
stationary food and instead rely on collisions with prey agents to obtain sustenance. The
successful consumption of prey by predators results in the transfer of energy to the predator

agents.

2.1.2 Sensors

In order to perceive their environment, the agents employ a raycasting system to simulate

vision capabilities. This system involves the emission of multiple rays from an eye, which is

positioned at distance r from the center of the agent in the direction a it is facing. The rays are

uniformly distributed within the agent's vision cone at an angle B, which is experimentally set as

default at 180 degrees. In our experiments, we utilize 13 rays with an unlimited range to capture

information from the agent's surroundings.

2.1.3 Calories/metabolism

Energy that the agent uses is symbolized as calories. Predators possess an unlimited
amount of energy, whereas Prey agents start with a finite energy value of 250 calories. The
energy of each agent gradually decreases over time as they perform various actions, such as

moving. This energy depletion is determined by the equation:



Energy = Energy — A lplio+7=0. 1 [4]. Since the maximum magnitude of each power value

1s 5, the sum of |pi| + |pr| can reach a maximum value of 10. The division by 10 in the

formula normalizes the powers, ensuring that the energy loss from movement falls within the
range of [0, A]. In our experiments, the default value of A is set to 1, effectively limiting the
energy loss from movement to a maximum of 1 calories per tick. When an agent's energy is
depleted, it becomes deactivated, rendering it unable to move or consume food. Both predator
and prey agents are subject to the same deactivation protocol when they are beyond the bounds
of the environment. Food is available in the environment and can be consumed by prey to

replenish a fixed amount of energy (50 calories).

2.2 NN (Artificial Neural Network):

The agent's vision system serves as the input for the artificial neural network. Each ray in
the vision system corresponds to two input nodes, representing distance and hue information.
The distance input informs the agent about the distance to an object in its surroundings, while the
hue input aids in identifying the nature of the object. Hue values span the range of [0, 360], but
for the purpose of feeding them as inputs to the ANN, they are normalized to the range of [0, 1].
The hues perceived by the agent are relative to their role within the environment, providing role-
specific color information for effective perception and decision-making processes.

Hue Normalized Hue

Value for Wall 30 (Orange m) 0.08333




Value for Full 330 (Pink m) 0.91667
Stationary Food

Value for Predator 40 0.11111

Agent

Table 2.2.1.1 Hue values for prey vision system

Hue Normalized Hue
Value for Wall 30 0.08333
Value for Full 180 0.5
Stationary Food
Value for Prey 330 (Pink m) 0.91667
Agent

Table 2.2.1.1 Hue values for predator vision system

The hue of stationary food in the agent's vision system is determined through linear
interpolation between values representing the depleted level and the full level, based on the
percentage of total calories available in the stationary food. The chosen hue values are designed
to reflect the desirability of the entity, with 0 representing undesirability, 180 as neutral, and 360
as desirable. Following this principle, the prey's vision system assigns similar hue values to both
predator agents and walls, enabling them to perceive both as potentially dangerous entities. For

predators, since stationary food is no longer their target, the hue value for prey is assigned the



same value as stationary food, while the hue value for stationary food is reassigned to 180 to
indicate its non-threatening and non-desirable nature. In addition to the hue value inputs, the
distance from the start of each ray to the collision point is inverted and normalized between the
range of [0, 1]. The normalization is performed by dividing this distance by the maximum
possible distance, which 1s calculated as the length between opposing corners of the environment
minus the agent's diameter. This normalization ensures that the maximum length of a ray fits
within the [0, 1] domain, with an input of 1 representing a distance of 0 and an iput of 0
representing an object located at the maximum distance. Lastly, the agent's vision system
incorporates two outputs for the wheels, corresponding to the left and right wheels. These

outputs determine the power that drives the wheels, as mentioned previously.

2.3 Genome

In the NEAT algorithm, genomes serve as the encoding mechanism for constructing
artificial neural networks. These genomes, as described by Stanley and Miikkulainen (2001), are
specifically designed to facilitate the alignment of corresponding genes during crossovers. The
encoded information includes both the connections between nodes and the corresponding
weights associated with these connections. In the original NEAT paper by Stanley (2001), it was
observed that frequent mutations led to more successful results. This tolerance to frequent
mutations is attributed to the protective effect of speciation within the system. As they stated,
“The system is tolerant to frequent mutations because of the protection speciation
provides”(Stanley 2001) Taking inspiration from these findings, our project adopted a strategy of

frequent yet small mutations for the numeric mutations. In line with the work of Stanley and



Miikkulainen (2001), we incorporated an 80% chance of mutation for each weight, as it was

shown to be effective in promoting variation within the neural network structures.

2.3.1 Numeric Mutations

We use a modified sigmoid function for our logistic activation function:

2k(x—m) 1 [5 ]

1+e- -

Along with the weights, each non-input node, including the output nodes, is associated with k

and m value, which can be subjected to mutation with an 80% probability, mirroring the

mutation chance for weights. The default value for k 1s set at 0.75, while the default value for m

1s 0. The mutation of k allows the agent to adapt its overall speed by modifying the shape of the

sigmoid function. A larger k value results in a steeper function, influencing the agent's speed

adjustments accordingly. On the other hand, mutating m enables the agent to prioritize specific

output ranges by shifting the sigmoid function along the x-axis. This allows the agent to favor



certain output values and fine-tune its behavior based on environmental conditions and

objectives.

For all numeric mutations there are overlapping mutation types:

Mutation Definition Occurrence K Value M Value ‘Weight
Operation
Chance Mutation Mutation Value
Range Range Mutation
Range
Re-Roll Rescales the mutations by up to a large 0.1% [-2, 2] [-2, 2] [-2, 2]
amount, but with the mean being to scale
by either -1 or 1
Shift Shift up or down by a small amount with 49.9% [-0.05, [-0.3,0.3] | [-0.5,0.5]
the uniform distribution centered around 0
0.05]
Scale Multiply the current number by either a 50% Re-scale 0.25 or Re-scale
uniform random number or the inverse of
said number. The uniform distribution is up to 0.25 | down to up to 0.5
centered around multiplying by 1.
or down to 0.2 or down
0.2 to 0.(3)

Table 2.3.1.1 Mutation Operations
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2.4 Environment

The environment is defined as a world that ensures the isolation of agents from each
other. The distribution process entails pairing agents into separate worlds, where they will
compete as predator and prey which is assigned to them randomly. In every world, exactly one
agent assumes the role of prey, while the other takes on the role of predator. To ensure a
comprehensive assessment of agent performance, a second simulation run is conducted, where
the roles from the initial run are reversed. This approach allows for a more balanced evaluation

where every agent can perform as both predator and prey.

2.4.1 Stationary Food

In the simulation, the stationary food items resemble a circle with a radius of r = 9 pixels
and are centered on specific coordinates. To introduce variability in their placement, a method
called food pod is utilized for spawning food. These food pods act as zones where the food can
randomly appear. Each food pod is represented by a circular region with a radius of 200 pixels.
In total, the environment consists of four food pods positioned at the North, East, South, and
West regions. The main purpose of employing food pods is to introduce randomness in the initial
spawning locations of the food items during each simulation run. This ensures that the
distribution of food is not fixed and allows for dynamic and unpredictable scenarios. To acquire

energy, the prey agents must overlap with the stationary food for a specific duration measured in

ticks. The calories rewarded is calculated as Amount of ticks°? overlapping calories. For the instant
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consumption method, this duration is set to 1 tick. As for gradual (partial) consumption, it is set
at 50 ticks as default in our experiment. It is noted that the prey agents do not need to
continuously overlap with the food to perform consumption. The ticks counter will reset after
100 ticks. Only when a prey fully consumes the food, it will be regenerated and spawned in
another food pod within the environment. The ratio of spawning food is set to 2 per 1 prey agent.
This ratio ensures a balanced food supply while also offering an alternative option when the

predator is circling within the vicinity of a food.

2.4.2 Wall / Border

To encourage the agents to stay within the boundary of a world, we use walls constructed
in the shape of a square with the size of 1000 by 1000 pixels. Each wall is represented by the
coordinates of its two endpoints, forming a line. Walls deactivate agents upon contact to prevent
them from exiting the designated area. Four walls are positioned along the North, East, South,

and West borders, effectively enclosing the environment.
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3 Experimental Setup (Design and Architecture)

3.1 Agent Evaluation

The evaluation of agent performance at the end of each NEAT generation is conducted
using a fitness function, which plays a major role in agent elimination and crossover processes.
The fitness function takes into account various factors, including the total calories consumed (C),
the number of ticks the agents spent out of bounds (T'), whether the hunt was successful (H) and

the time when the hunt concluded (Hc) representing a bonus to prey when it survives longer or

predator when it successfully captures the prey faster. These components contribute to the overall

fitness score, which determines the agent's performance in the simulation.

Fitness=wro*C+wr1*T + wr2*H + wfs * Hc [6]

Fitness Attribute Weight value

Calories eaten (C)

wfo=10

Ticks out of bounds (T)

wfi=—2

Successful Hunt (H)

wr2 = 50 (Predator)
ws2= — 50 (Prey)




Hunt Conclusion Bonus

()
Hc

wr3z =50

Table 3.1 Fitness Function Weights

In specific, each of these factors are defined as follows. The calories consumed (C)

13

awarded to each agent are proportional to their calories consumed. For prey, it is from their food

consumption. While for predators, it is from eating the prey. The amount of calories a predator
can gain from prey depends on the calories prey obtained from stationary food during the run.
This aims to incentivize predators to allow the prey to eat up. Additionally, the total number of
ticks spent out of bounds (T) 1s one of the punishment metrics for agents. Agents are
immediately deactivated when they move out of bounds, accumulating a higher value for 7. As

for the successful hunt A, it is the reward w2 = 50 given to the predator when it successfully

captures the prey. On the other hand, prey receive this penalty for being caught, denoted as

wrf2 = — 50. Lastly, the hunt conclusion bonus is given based on the percentage of ticks the

prey was alive during the run, while for the predator agent, it represents the percentage of ticks

remaining in the run after capturing the prey.
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3.2 Speciation

3.2.1 Species Selection

Speciation is a crucial component of NEAT aimed at preserving innovations that may not
yield immediate short-term improvements but have the potential for long-term performance
enhancements. Agents with similar genome structures are grouped into species. Throughout the
simulation, these species compete with one another. Fitness sharing is implemented among
agents within the same species to prevent domination of the population. During reproduction, the
method to produce the next generation is by breeding random individuals from each species,
based on their average fitness. This approach encourages diversity and allows promising genome

material to persist and evolve over time.

3.2.2 Compatibility measuring
Compatibility measuring, denoted as 8, is a method employed in NEAT to assess the similarity
between agents, enabling their classification into distinct species. The calculation of compatibility follows
a similar approach to the original NEAT compatibility distance formula, with a crucial modification.
Given that our genetic mutations involve k and m values, they must be taken into account during

compatibility assessment.

=c1E + c2D + c3W + c4K + csM

The coefficients determine the importance of the factors (Excess Genes), D
— c1c2,¢c3,caand cs — E _
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D w K M
(Disjoint Genes), (Average weight difference), (Average K value difference) and (Average M

value difference).

For our settings, we chose:

Coefficients Value
1
c1
1
c2
0.3
c3
04
c4
04
cs

Table 3.2 Species Compatibility Weights
3.3 Parameter Varying in Experiments

Four different parameters were varied during the study: role awareness, overall agent speed,
speed differentials between two roles of predator and prey agents along with gradual

consumption of stationary food.

3.3.1 Role Awareness

During the course of this experiment, two types of distinct tests were conducted. In the first type,

the agents were provided with the knowledge of their assigned role as either a prey or a predator. We
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convey this information to the artificial neural network (ANN) by pushing to the input a value of 1 if the
agent was a predator and 0 if it was a prey. In contrast, the other withheld this information from the
agents, thereby making the agents unaware of their specific role. To further examine role awareness’s
impact on the agent’s performance, we performed these two types of tests on gradual consumption (with
ticks to fully consume set at 50, calories per food at 250), and instant consumption, where prey agents
only need to overlap their body with the food’s to achieve full consumption. This will be measured in
calories instead of food counts.

3.3.2 Speed advantages

During the course of this experiment, the speed advantages are given to prey and predator as:

Prey Agent Max Speed Predator Agent Max Speed
Prey Advantage: 125% faster 6.25 5
Prey Advantage: 150% faster 7.5 5
Predator Advantage: 125% faster 5 6.25
Predator Advantage: 150% faster 5 7.5

Table 3.3 Speed Advantage Setup

3.3.3 Overall speed

During the frials in this experiment, both predator and prey agents shared the same maximum
speed. The values of the shared speeds tested are as follows: 1 pixels per tick (25% Default Speed), 2.5
pixels per tick (50% Default Speed), 3.75 pixels per tick (75% Default Speed), 5 pixels per tick (

Default Speed), 7.5 pixels per tick (150% Default Speed). 10 pixels per tick (200% Default Speed).
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3.3.4 Gradual Consumption

In this experiment, we tested the impact of the ticks to achieve full consumption with the calories
reward remaining fixed at 10 calories per tick overlapped. This will affect how often the agent will need
to relocate to another area where the new food is spawned. This will be measured in calories instead of
food counts. Unlike food counts, this evaluation is carried out in terms of calories. This shift provides a
more comprehensive understanding of the agents' adeptness at obtaining sustenance. Details are as
follows:

Tick to full consumption (Ticks) Total calories per food (Calories)

1 (Instant) 10
25 250
50 500
100 1000

150 1500




4 Discussion

4.1 Role Awareness

Total Prey Hunted Per Generation

22.5
20.0
o 35
2
5
£ 15.0 1
)
a 12.5 4
3
F 10.0 4
7.5 1 - Gradual Consumption Role Awareness Off
~—— Gradual Consumption Role Awareness On
5.0 1 -~ Instant Consumption Role Awareness Off
-~ Instant Consumption Role Awareness On

0 50 160 15IO 2(I)0 250 360 35'0 400
Generation

4.1.1 Role Awareness: Prey Hunted Per Generation Chart For the number of
prey captured, role awareness has a negative effect for the gradual consumption profiles. While having a
similar upward trend to when it was deactivated, role awareness had a consistently lower count of 5
preys per generation. While for instant consumption, role awareness initially resulted in a slightly lower
count during the early and middle generations, but it was larger at the end. Introducing changes in how
prey consumes food increased the difference between the agent’s roles. With gradual consumption, the
prey agent not only has to touch the food but remain in the vicinity while watching out for the predator.

In contrast, for instant consumption, the prey's task involves simply identifying the food, moving

18



19

towards it, and promptly proceeding to the next one even while being chased by the predator. It's worth
noting that the role of the predator remains consistent across both profiles, which involves identifying
the prey and pursuing it. It is almost identical to the prey's role in instant consumption. We theorized that
the learning experience acting as prey did not translate well when the agent became a predator in gradual
consumption profiles. As evidence in the total calories consumed by prey, the difference between the
profiles starts to appear around generation 50. While for the number of prey hunted, it is sooner, around
generation 25, showing that prey becomes better at identifying and consuming food than predator in
recognizing and catching prey. It is noted that the way prey see food is identical to predator seeing prey.
Overall, this phenomenon warrants a deeper investigation into the agent’s neural network, particularly in
the structure and firing sequences when they are either predator or prey. For instant consumption, due to
the similarity in their tasks, having to specify which roles they play is redundant. Hence, role awareness

offers no significant performance improvement to predators.
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Total Calories Prey Consumed Per Generation
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4.1.2 Role Awareness: Food Consumption Calories Per Generation Chart

For food consumption, role awareness had a positive effect. This is particularly in the case for
gradual consumption where it showed a steady increase after generation 50 compared to role awareness
being disabled. We expect this result, as the presence of a role indicator helps the agent in learning the
threats from predators more quickly, facilitating the evolution of countermeasures in their neural
networks. This also explained the fewer number of prey being captured in the above section. For instant
consumption, with the previously discussed small difference in functionality between predators and prey,
role awareness exhibited a small positive impact on the agent's ability to gather food. The reason this

effect is not as significant as gradual consumption might also lie in the way the agent consumes food. In
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instant consumption, prey must relocate frequently because food respawns in a different location upon
contact. Thus, they will spend more time traveling and being more exposed to predators.

4.2 Speed Advantages

Total Prey Hunted Per Generation

\ MWW"M’WM*’%

AN

20 A

el . Tu ! -‘"'(‘le.,."-'\,lwp,"d*ﬂ‘__mml

Total Prey Hunted

10 A —— Predator 125% faster
~— Predator 150% faster
—— Prey 125% faster
5 4 —— Prey 150% faster
—— No Speed Advantage

0 50 160 15||0 260 2%0 360 35lO 460
Generation
4.2.1 Speed Advantages: Prey Hunted Per Generation Chart

The speed advantage significantly influences the performance of agents, irrespective of their
assigned roles. For example, the predator experiences substantial benefits when it possesses a higher
speed, as demonstrated by the pronounced increase in the number of successful hunts depicted in the
graphs within Section 4.2.1.2. The magnitude of this speed advantage directly correlates with the
predator's proficiency in capturing prey. This is expected, due to prey lacking sufficient maneuverability

to evade predators. This is further illustrated when prey became faster. Predators had less successful hunts
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depending on how big the advantage prey had. It's worth noting that predators display the ability to adapt

to the speed disadvantage, with the number of successful hunts fluctuating in the early generations and

exhibiting a small decline in the later ones.

Food Count

Total Food Consumed by Prey Per Generation
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In terms of the food amount acquired by prey, it is similar to predator where prey’s speed

Generation

4.2.2 Speed Advantages: Food Consumption Count Per Generation Chart

advantage allows them to consume more food. This efficiency grows correspondingly to the magnitude of

the speed advantage they hold over predators and vice versa, when predators were faster than prey.

However, prey being faster does not benefit them fully. This can lead to some unfavorable behaviors. For

example, as prey can simply outrun the predator, they tend to underestimate the threat posed by predators.

They exhibited dangerous behaviors such as running directly in front of predators without attempting to
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evade. This leads to the number of prey being captured remains relatively high despite having the
advantage.

In general, we achieved the best optimal result by having no speed advantage.While favoring
either predator or prey does indeed lead to improved performance, it also hinders the other entity with a
speed disadvantage. As a result, maintaining equilibrium between the capabilities of predators and prey
becomes crucial for achieving the best outcome over an extended duration. This equilibrium ensures that

predators excel in capturing prey while prey exhibit prowess in evading and efficiently consuming food.

4.3 Overall speed

Total Prey Hunted Per Generation
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4.3.1 Overall speed: Prey Hunted Per Generation Chart
From the chart above, increasing the speed does not significantly affect the predator performance
in catching prey. Modifying the agent’s overall speed is similar to changing the size of the world and the
relative space between each entity. Therefore, variations in speed, whether increased or decreased, have
negligible impact on the predator's performance. This is due to the relative distance between the predator
and its prey being consistent for every variation. An exception arises when the speed is excessively
lowered, particularly when it is reduced to a quarter of the default setting. This led to more generations

where the predator failed to reach the prey within the designated time frame.

Total Food Consumed by Prey Per Generation
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4.3.2 Overall Speed: Food Consumption Count Per Generation Chart

Same as the number of prey being captured, the amount of food consumed by prey is also
correlated to how fast the agent moves. As speed decreases, the time the agent requires to reach the food
becomes longer. Thus, we could see that prey consumed more food as the speed increased. However, this
growth of performance slowed down when the speed increased to two times the default amount. We
speculate that this is due to the agents going out of bound more in the later generations. As the agent's
speed increases, its maneuverability decreases, making it more prone to crossing the boundary and getting
deactivated as a result. This warrants an in depth investigation into the reason for the stagnation
phenomenon. Overall, a moderate speed is the best option as exceeding the previously mentioned

threshold becomes unproductive with both performance metrics no longer showing a stable increase. 4.4

Gradual Consumption
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Total Prey Hunted Per Generation
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4.4.1 Gradual Consumption: Prey Hunted Per Generation Chart As observed in
section 4.4.1, increasing the ticks required for full consumption does not significantly impact the
predator’s performance in catching prey in the long run. This increment in the requirement to fully
consume the food causes prey to remain in a particular area longer. This should make them more
susceptible to ambush and being cornered by the predator. However, we witnessed the opposite effect in
which more prey is being captured the lower the ticks to full consumption is between generation 50 to
250. This effect wanes over the generations, failing to bring about a substantial change in the number of
prey captured in the long run. This implies that predators learn quicklier when prey relocates frequently

with their preference toward catching prey while it is on the move. This is because prey has picked up a
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behavior to hide behind the food. Thus, the longer the tick for full consumption is, the longer they can

hide.
Total Calories Prey Consumed Per Generation
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4.4.2 Gradual Consumption: Calories Consumption Per Generation Chart
For the calories consumed, it increases along with the amount of ticks for full consumption. It is
worth noting that the amount of calories gained per tick remains constant. Thus the increase in the amount
of calories consumed is attributed to the fact that the agent does not need to relocate as often. They can
remain in an area longer until the food sources are depleted. This increment in calories consumption

aligns with the common sense hypothesis that when a food source is both more abundant and accessible,
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it would naturally lead to a higher consumption. This further highlights the prey’s performance as calorie

consumption steadily increased, while the number of prey captured did not show a significant rise.

5 Conclusion

Overall, the NEAT algorithm consistently demonstrated its efficacy throughout the simulations in
evolving hunting and foraging behaviors within two distinct agent roles: predator and prey, while using a
shared neural network. This adaptability was observed across a number of diverse environmental settings,

showcasing the agents' ability to develop target recognition, sufficient maneuvering and evading abilities.

Role awareness has a more apparent effect where there is a huge disparity between the roles. For
our experiment, it has a positive impact on the prey agents' performance, while having a slightly negative
effect on predators. Due to the small difference in their task for instant consumption profile, this effect is
not as apparent as in gradual consumption profiles. Our hypothesis is that having a clear indicator of their
roles helps prey in identifying threats coming from predators sooner. Thus, this helps them evolve
countermeasures in their neural network early. While for predators, we speculated that the negative
impact is due to experience gained as prey, such as target identification, do not carry over effectively.
Overall, this opens a new opportunity for a thorough analysis into the agent’s neural network, primarily in

the structure and firing sequence in their corresponding role.

Regarding speed advantages, our study indicates that maintaining equal speeds for both predator
and prey agents results in a superior overall outcome compared to scenarios where we favor one type of
agent over the other. The data indicates that if either prey or predator is granted a speed advantage, the

faster agent performs better in their respective roles of hunting or evading and eating food. Therefore,
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when evolving agents with multifunctional roles such as hunting and foraging, it's crucial to ensure a
balance in terms of speed between them.

For overall speed, our simulation showed that it mostly affects the prey’s performance. The
relative speed of agents to each other does not change unlike in the previous experiments, so predators are
not benefiting from the increase of overall speed. In fact, their performance tends to decline as both
agents are more likely to go out of bounds at higher speeds. For prey, we noted a rise in food consumption
as speed increases. However, this performance increase starts to level off when the speed surpasses the
default value of 5 pixels per tick. Therefore, to optimize agent performance in both predator and prey
roles, it's essential to select a moderate speed value that strikes a balance between avoiding going out of

bounds and maximizing food consumption.

Finally, our experiments exploring the impact of adjusting the ticks required for full food
consumption indicate that this change primarily benefits prey agents with the predator's performance not
increasing despite having prey in a certain area longer. When the number of ticks needed for full
consumption remains low, predators demonstrate improved hunting performance in the early generations
due to prey having fewer time hiding behind food. However, this advantage levels off in later generations,
suggesting that prey agents also adapt to evade predators over time using other means. The prey’s
performance in terms of consuming stationary food increases the higher the amount of food is. This
confirms the common sense hypothesis as preys do not have to relocate frequently.
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