

Oxidative Stress Involved in the Etiopathogenesis of ADHD By: Elizabeth Petrescu, Dr. EC Cline

TACOMA

ABSTRACT:

Background: Attention-Deficit Hyperactive Disorder (ADHD) is a neurodevelopmental disorder that affects people of all ages; however, the etiopathogenesis of this disorder is still unknown. Over the years many theories have been proposed, one recent and prominent theory is oxidative stress.

Description: Through a critical review, the progress that research has made over the past two decades, and evidence that oxidative stress is present in both children and adults diagnosed with ADHD was discussed. Presenting the findings of articles proving the presence of oxidative stress through assessing oxidant and antioxidant biomarkers, enzymatic activity, oxidative metabolism impairment, oxidative DNA damage, and lipid peroxidation in both children and adults with ADHD.

Conclusion: There is sufficient evidence to support that oxidative stress plays a role in the etiopathogenesis of ADHD. Continued research is needed to further the understanding of what causes uncontrollable oxidative stress to occur and why it leads to ADHD. This review discusses the findings and how they highlight the considerable progress made over the years in not only linking oxidative stress and ADHD, but also proposing potential therapies and treatments for those diagnosed.

SYNTHESIS:

There have been many studies done to investigate whether or not oxidative stress is present in patients diagnosed with Attention-Deficit Hyperactive Disorder. Based on the evidence presented in these studies, the argument that oxidative stress plays a role in the etiopathogenesis of ADHD can be and is supported. Several studies were done using children, adults, and using the most widely accepted animal model for ADHD, SHR rats. These studies, done through observation, demonstrate the presence of oxidative stress, an imbalance of antioxidants, or the damage caused by oxidative stress; specifically, lipid peroxidation, impaired oxidative metabolism, or oxidative DNA damage. All studies investigating whether or not there was damage or the presence of oxidative stress have concluded that there is a significant difference in oxidative levels and antioxidant levels between those with and those without ADHD.

Oxida

Oxida

Oxida

Image: Constraint of the second second

Vitam

Antio

Sal Sal

Lipic

n-3

Exl

Infla

Summary Table of Experiments			
Parameter	Subject	Compared to Healthy Control Group	Importance/Indication
Oxidative Damage Biomarker: MDA	Children and Adults	Significantly higher mean levels of MDA	Lipid peroxidation damage and oxidative damage observed
ative Stress Biomarker: 8-OHdG OSI NOS XO	Children and Adults	Significantly increased levels of 8-OHdG, OSI, NOS, and XO	Impaired oxidative metabolism
exidative Biomarker: TOS ROS Thiols NO	Children, Adults, and Animal Model	Significantly higher levels of TOS, ROS, NO, and Thiols	An imbalance in free radical- antioxidant levels caused by uncontrollable oxidative stress
id Oxidation Enzyme: PON-1	Children	Significantly lower levels of PON-1 activity	Presence of oxidative stress observed
Intioxidant Enzyme: PON ARES GSH-Px GST SOD CAT SPON	Children and Adults	Activity levels of PON, ARES, GSH-Px, GST, SOD, CAT, and SPON were significantly lower	Increased antioxidant defense mechanisms but not enough to correct oxidative imbalance leading to low antioxidant activity levels
ntioxidant Biomarker: TAS	Children and Adults	Significant decrease in TAS level	Impaired oxidative metabolism confirming the presence of oxidative stress
nin D Status Biomarker: 25(OH)D	Children	Significantly lower concentrations of 25(OH)D	Low levels of the body's natural antioxidant production
oxidant/Oxidant Balance Biomarker: Thiol/Disulfide	Adults	Native thiol levels were significantly lower and disulfide levels were significantly higher	The thiol/disulfide homeostasis has shifted towards disulfide
livatory Biomarkers: livary Protein Thiols seudocholinesterase Magnesium	Children	Significant increase in salivary protein thiol and pseudocholinesterase levels, significantly lower magnesium levels	Magnesium levels have been shown to be decreased when oxidative stress is present
d Peroxidation Urinary Biomarker: Acrolein-lysine	Children	Significantly higher levels of urinary acrolein-lysine	Lipid peroxidation damage observed
FA Oxidative Damage Biomarker: halant Ethane Levels	Children	Significantly higher levels of ethane in exhalant	Higher rate of oxidative breakdown of n-3 polyunsaturated fatty acids
ammation Factors and Cytokine Levels	Children and Animal Model	Decreased cytokine levels in animal model and significantly higher levels of inflammatory factors	Inflammation can be a co- occurring co-factor in ADHE and the decreased cytokine levels indicate basal deficit commonly associated with ADHD
Cellular Immunity Biomarker: ADA	Children	Significantly higher levels of ADA activity	Cellular immunity could be a co-factor that co-occurs in ADHD

Reference

Oztop et al. 2012 Bulut et al. 2013 Verlaet et al. 2018 Ceylan et al. 2010 Bulut et al. 2007 Oztop et al. 2012 Kurhan & Alp 2021 Selek et al. 2012 Sezen et al. 2016 Guney et al. 2015 Kul et al. 2015 Ceylan et al. 2012 Selek et al. 2012 Sezen et al. 2016 Guney et al. 2015 Kul et al. 2015 Leffa et al. 2017 Selek et al. 2008 Ceylan et al. 2012 Bulut et al. 2013 Guney et al. 2015 Ceylan et al. 2010 El-Adham et al. 2011 Ceylan et al. 2012 Namjoo et al. 2020 Selek et al. 2008 Selek et al. 2012 Sezen et al. 2016 Gueny et al. 2015 Kul et al. 2015 Goksugur et al. 2014 Sharif et al. 2015 Kurhan & Alp 2021 Archana et al. 2011 Kawantani et al. 2013 Ross et al. 2013 Namjoo et al. 2020 Leffa et al. 2017 Ceylan et al. 2012

CONCLUSION:

The causes and reasons for development of the neurodevelopmental disorder Attention-Deficit Hyperactive Disorder are still unknown. It is believed that genetics play a role; however, that alone cannot explain the development. Based on evidence it is theorized that oxidative stress plays a role in the development of ADHD; however, more research is needed. It is still unknown if every person diagnosed with ADHD was born with it or developed it due to other factors involved. So far there have only been observational studies done, which implies correlation; therefore, the next step is to attempt to prove causation by doing manipulation studies. In the future new methods of diagnosis tools need to be studied and implemented to help with earlier diagnosis; methods such as, saliva, urine, and breath testing which are easy, cheap, and non-invasive. Along with new diagnosis methods there need to be more treatment options. One proposed treatment in response to oxidative stress is antioxidant therapy using antioxidant supplements or altering a patient's diet to add antioxidant rich foods. Antioxidants are antiinflammatory and combat free radical effects, making them a good treatment for ADHD patients. However, more rigorous research and clinical trials are needed before antioxidants can be administered as a co-treatment along with medication (Alvarez-Arellano et al. 2020).

REFERENCES: Alvarez-Arellano L, González-García N, Salazar-García M, Corona JC. 2020. Antioxidants as a Potential Target against Inflammation and Oxidative Stress in Attention-Deficit/Hyperactivity Disorder. Antioxidants. 9(2):176. doi:10.3390/antiox9020176. [accessed 2022 Apr 27]. https://www.mdpi.com/2076-3921/9/2/176 Archana E, Pai P, Prabhu BK, Shenoy RP, Prabhu K, Rao A. 2012. Altered Biochemical Parameters in Saliva of Pediatric Attention Deficit Hyperactivity Disorder. Neurochem Res. 37(2):330-334. doi:10.1007/s11064-011-0616-x. [accessed 2022 May 14]. https://doi.org/10.1007/s11064-011-0616-x Bulut M, Selek S, Bez Y, Cemal Kaya M, Gunes M, Karababa F, Celik H, Asuman Savas H. 2013. Lipid peroxidation markers in adult attention deficit hyperactivity disorder: New findings for oxidative stress. Psychiatry Research. 209(3):638-642. doi:10.1016/j.psychres.2013.02.025. [accessed 2022 Apr 27]. https://www.sciencedirect.com/science/article/pii/S0165178113000991 Bulut M, Selek S, Gergerlioglu HS, Savas HA, Yilmaz HR, Yuce M, Ekici G. 2007. Malondialdehyde levels in adult attention-deficit hyperactivity disorder. J Psychiatry Neurosci. 32(6):435-438. [accessed 2022 Jun 8]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077350 Ceylan M, Sener S, Bayraktar AC, Kavutcu M. 2010. Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder Progress in Neuro-Psychopharmacology and Biological Psychiatry. 34(8):1491–1494. doi:10.1016/j.pnpbp.2010.08.010. [accessed 2022 Apr 27]. https://www.sciencedirect.com/science/article/pii/S0278584610003131 Ceylan MF, Sener S, Bayraktar AC, Kavutcu M. 2012. Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder: Oxidative stress and immunity in ADHD. Psychiatry and Clinical Neurosciences. 66(3):220-226. doi:10.1111/j.1440-1819.2012.02330.x. [accessed 2022 Apr 27]. https://onlinelibrary.wiley.com/doi/10.1111/j.1440-1819.2012.02330.x El-Adham E, Hassan A, Mahdy A. 2011. Nutiritional and Metabolic Disturbances in Attention Deficit Hyperactivity Disease. 6:10–16 [accessed 2022 Jun Goksugur SB, Tufan AE, Semiz M, Gunes C, Bekdas M, Tosun M, Demircioglu F. 2014. Vitamin D status in children with attention-deficit-hyperactivity disorder. Pediatrics International. 56(4):515–519. doi:10.1111/ped.12286. [accessed 2022 Jun 8] https://onlinelibrary.wiley.com/doi/abs/10.1111/ped.12286 Guney E, Cetin FH, Alisik M, Tunca H, Tas Torun Y, Iseri E, Isik Taner Y, Cayci B, Erel O. 2015. Attention Deficit Hyperactivity Disorder and oxidative stress: A short term follow up study. Psychiatry Research. 229(1):310–317. doi:10.1016/j.psychres.2015.07.003. [accessed 2022 Apr 27]. https://www.sciencedirect.com/science/article/pii/S0165178115004485 Kawatani M, Tsukahara H, Mayumi M. 2013. Evaluation of oxidative stress status in children with pervasive developmental disorder and attention deficit hyperactivity disorder using urinary-specific biomarkers. Redox Rep. 16(1):45–46. doi:10.1179/174329211X12968219310873. [accessed 2022] May 30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837692/ Kul M, Unal F, Kandemir H, Sarkarati B, Kilinc K, Kandemir SB. 2015. Evaluation of Oxidative Metabolism in Child and Adolescent Patients with Attention Deficit Hyperactivity Disorder. Psychiatry Investig. 12(3):361-366. doi:10.4306/pi.2015.12.3.361. [accessed 2022 May 30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4504919 Kurhan F, Alp HH. 2021. Dynamic Thiol/Disulfide Homeostasis and Oxidative DNA Damage in Adult Attention Deficit Hyperactivity Disorder. Clin Psychopharmacol Neurosci. 19(4):731-738. doi:10.9758/cpn.2021.19.4.731. [accessed 2022 Apr 27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553522 Leffa DT, Bellaver B, de Oliveira C, de Macedo IC, de Freitas JS, Grevet EH, Caumo W, Rohde LA, Quincozes-Santos A, Torres ILS. 2017. Increased Oxidative Parameters and Decreased Cytokine Levels in an Animal Model of Attention-Deficit/Hyperactivity Disorder. Neurochem Res. 42(11):3084-3092. doi:10.1007/s11064-017-2341-6. [accessed 2022 Apr 27]. https://doi.org/10.1007/s11064-017-2341-6. Namjoo I, Alavi Naeini A, Najafi M, Aghaye Ghazvini MR, Hasanzadeh A. 2020. The Relationship Between Antioxidants and Inflammation in Children With Attention Deficit Hyperactivity Disorder. Basic Clin Neurosci. 11(3):313–321. doi:10.32598/bcn.11.2.1489.1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502190/ Oztop D, Altun H, Baskol G, Ozsoy S. 2012. Oxidative stress in children with attention deficit hyperactivity disorder. Clinical Biochemistry. 45(10-11):745-748. doi:10.1016/j.clinbiochem.2012.03.027. [accessed 2022 Apr 27]. https://linkinghub.elsevier.com/retrieve/pii/S0009912012001580. Ross BM, McKenzie I, Glen I, Bennett CPW. 2013. Increased Levels of Ethane, A Non-invasive Marker of n-3 Fatty Acid Oxidation, in Breath of Children with Attention-Deficit Hyperactivity Disorder. Nutritional Neuroscience. 6(5):277–281. [accessed 2022 Jun 8]. https://doi.org/10.1080/10284150310001612203 Selek S, Bulut M, Ocak AR, Kalenderoğlu A, Savaş HA. 2012. Evaluation of total oxidative status in adult attention deficit hyperactivity disorder and its diagnostic implications. Journal of Psychiatric Research. 46(4):451–455. doi:10.1016/j.jpsychires.2011.12.007. [accessed 2022 Apr 27]. https://www.sciencedirect.com/science/article/pii/S0022395611002895. Selek S, Savas HA, Gergerlioglu HS, Bulut M, Yilmaz HR. 2008. Oxidative imbalance in adult attention deficit/hyperactivity disorder. Biological Psychology. 79(2):256–259. doi:10.1016/j.biopsycho.2008.06.005. [accessed 2022 Apr 27]. https://www.sciencedirect.com/science/article/pii/S0301051108001476. Sezen H, Kandemir H, Savik E, Basmacı Kandemir S, Kilicaslan F, Bilinc H, Aksoy N. 2016. Increased oxidative stress in children with attention deficit hyperactivity disorder. Redox Rep. 21(6):248–253. doi:10.1080/13510002.2015.1116729. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837712/

<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6837/12/</u>.
Sharif MR, Madani M, Tabatabaei F, Tabatabaee Z. 2015. The Relationship between Serum Vitamin D Level and Attention Deficit Hyperactivity Disorder. Iran J Child Neurol. 9(4):48–53. [accessed 2022 Jun 8]. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670977/</u>.
Verlaet AAJ, Breynaert A, Ceulemans B, De Bruyne T, Fransen E, Pieters L, Savelkoul HFJ, Hermans N. 2019. Oxidative stress and immune aberrancies in attention-deficit/hyperactivity disorder (ADHD): a case–control comparison. Eur Child Adolesc Psychiatry. 28(5):719–729. doi:10.1007/s00787-018-1239-4. [accessed 2022 Apr 27]. <u>https://doi.org/10.1007/s00787-018-1239-4</u>.