

The Complexity of eIF4E1, Its Impact on Ortholog Identification, and Improvements for Student Success with Gene Annotation

Katherine Free, Dr. Jack Vincent Biomedical Science, University of Washington Tacoma

BACKGROUND

The Genomics Education Partnership (GEP) Pathways Project uses a network-based analysis to understand the function of metabolic and signaling pathways and their evolution across the genus *Drosophila*. Currently, the Pathways Projects is using a pipeline method that allows undergraduate students to complete annotations on genes located in the insulin signaling pathway of the *Drosophila* species.

SIGNIFICANCE

Gene Annotation

 Recognize how regulatory regions of particular genes evolve within a network of a species

The Eukaryotic Translation Initiation Factor 4E1, eIF4E1

Crucial component of the *Drosophila* genome

Homologs	Sequence Location
eIF4E1	3L
eIF4EHP	3R
eIF4E3	3L
eIF4E4	3L
eIF4E5	3L
eIF4E6	3R
eIF4E7	X

Figure 1. Table showing the seven homologs of the gene eIF4E1. These homologs make identifying the ortholog difficult while annotating.

OBJECTIVE

- 1. Annotate eIF4E1 in *D. obscura, D. navojoa, D. takahashii* following the Pathways Project Walkthrough step-by-step
- 2. Examine the *tblastn* results
- 3. Compare genomic neighborhoods with the reference species
- 4. Determine if the ortholog is identified

HYPOTHESIS

The eIF4E1 gene will not be able to be annotated in *D. obscura, D. navojoa,* or *D. takahashii* using the current Pathways Project Walkthrough criteria. Identifying the ortholog rather than one of the multiple homologs will be challenging when looking for the *tblastn* result that has both the highest percent identity and the lowest E value.

Figure 4. Simplified version of the genomic neighborhood of *D. melanogaster* showing eIF4E1 and its

surrounding genes. Any ortholog of eIF4E1 will have these genes present in its genomic

neighborhood. This version was used for comparative purposes.

CONCLUSION

Our hypothesis is supported. The gene eIF4E1 cannot be annotated using the Pathways Project walkthrough as written in *D. obscura*, *D. navojoa*, *or D. takahashii* due to the presence of multiple homologs. We have proposed to the GEP that looking at the genomic neighborhood before identifying potential coordinates of a gene location would be the first step in adjusting the annotation protocol to accommodate these issues with the eIF4E1 gene in *Drosophila* species.

REFERENCES

- Genomics Education Partnership (GEP) Mission. 2017. Tuscaloosa (AL): The University of Alabama Genomics Education Partnership https://thegep.org/aboutsite/
- 2. Sandlin K, Leung W, Reed L. 2021. Pathways Project: Annotation Walkthrough. Genomics Education Partnership.