THE USE OF A SATURATION ZONE IN RAIN GARDENS AMENDED WITH BIOSOLIDS TO REDUCE NITROGEN FROM STORMWATER

Sharon Hunter
Summer Research Intern
University of Washington-Tacoma, Center for Urban Waters

Senior, Environmental Science-Biology Track
University of Washington-Tacoma

Introduction

 Nitrogen is an essential element for life

• Problem:

- Excess nitrogen leaches into waterways
- Eutrophication
- Nitrate concentrations
 0.2 mg/L can trigger
 eutrophication in surface waters (NOAA 2012)

http://westseattleblog.com/2010/06/new-stencils-for-alki-storm-drains-thanks-to-

matson-navigation

Eutrophication

- Algal blooms
 - Fresh water: phosphorus limited
 - Marine waters: nitrogen limited
- Global problem
- Local problem
 - Hood Canal:
 Sensitive to nitrogen
 (Newton 2012)

http://serc.carleton.edu/images/microbelife/topics/red_tide_genera.v3.jpg

Nitrogen Sources

- Point Sources
- Natural
- Non-point
- Increased impervious surfaces decrease stormwater infiltration

http://www.ecy.wa.gov/puget sound/dissolved02 problem.html

Nitrogen in soil

 Organic matter in soil breaks down to ammonia

Nitrogen in soil

- Organic matter in soil breaks down to ammonia
- Nitrification

http://topsoil-screener.com/2012/04/nitrogen/

Nitrogen in soil

- Organic matter in soil breaks down to ammonia
- Nitrification
- Denitrification

http://topsoil-screener.com/2012/04/nitrogen/

Denitrification

- Favorable conditions for denitrifying bacteria:
 - Organic carbon
 - Absence of oxygen

http://genome.jgi-psf.org/parde/parde.home.html

Rain Gardens (Bioretention System)

- Intercept stormwater
- Increase infiltration
- Reduces storm water volume
- Removes solids
 - May remove dissolved particles

http://www.fosc.org/AmEImParkUpdateNov2007.htm

Rain Garden Soil Research at UW-T Urban Waters

Soil amendments to improve rain garden efficiency

- 2011 results for nitrogen:
 - Nitrogen higher in effluent than influent
 - Decomposing organics in compost and biosolids served as nitrogen source

http://www.tacoma.washington.edu/messages/news/2011/3/story1.html

Rain Garden Soil Research at UW-T Urban Waters

2012 Goals

- Develop a solution to reduce influent nitrogen and *phosphorus from stormwater in a rain garden soil mixture
- Find a productive use for biosolids

http://inhabitat.com/tacomas-center-for-urban-waters-can-actually-think-for-itself/

^{*}The focus of this presentation is nitrogen. Please refer to Brian Hite's research for the phosphorus results.

Hypotheses

- Hypothesis 1:

 Saturated zone in rain gardens leads to lower concentrations of nitrates in the effluent
- Hypothesis 2:

 The use of a biosolids
 amendment in rain
 gardens will increase
 ammonia in the effluent

http://depts.washington.edu/uwbg/docs/stormwater/11-Photos_RainGardens_Cisterns.pdf

Biosolids

- Solids from municipal wastewater treatment plants
- High in nutrients
 - Used in horticulture, landscaping, forestry, gardening
- Currently not approved for rain gardens

http://www.cityoftacoma.org/Page.aspx?hid=1474

Soil Amendments

100% Class A Biosolids: carbon source nutrient source

Sand: prevents pooling high infiltration rate

Sawdust: moisture retention carbon source

WTR (water treatment residual): aluminum and iron based capture phosphates

Methods: Soil Columns

- Stratified vs. Mixed
- Unsaturated vs. Saturated

Unsaturated Stratified

Saturated Stratified

Unsaturated Mixed Saturated Mixed

Soil Combinations

- Stratified soil columns
 - WTR/sand bottom 6 inch layer

- Mixed soil columns
 - WTR mixed throughout soil
 (same mass of WTR in both columns)

Unsaturated vs. Saturated

Unsaturated

Saturated

Unsaturated Stratified Stratified Saturated

Unsaturated Mixed Saturated Mixed

Methods

- Packing
- Loading
 - Synthetic storm water (influent)
 - 0.3 mg/L phosphorus
 - 1.0 mg/L nitrogen
 - 8 liters, 2 times/week
 - o 9 "rain events"

Methods

- Sampling: Effluent
 - Collection
 - First liter flush
 - Composite: liters 2-8
 - Filtration
 - o 0.45 micron filter
- Analysis
 - WESTCO Nutrient Analyzer (automated spectrophotometer) at UW-T

Nitrates/Nitrites as Nitrogen: Stratified

N Concentration (mg/L)

 NO_3/NO_2 –

Unsaturated

Saturated

Nitrates/Nitrites as Nitrogen: Stratified

Saturated

Unsaturated

Nitrates/Nitrites as Nitrogen

- Stratified
 - First liter flush higher concentrations than liters 2-8
 - Lower nitrite/nitrate concentrations in saturated columns than unsaturated columns

Nitrates/Nitrites as Nitrogen: Mixed

Nitrates/Nitrites as Nitrogen

- Mixed
 - First liter flush higher concentrations than liters 2-8
 - Lower nitrite/nitrate concentrations in saturated columns than unsaturated columns

Nitrates/Nitrites as Nitrogen

- Saturated columns
 - Lower concentrations from mixed than stratified for most rain events
 - Concentrations from mixed effluent on all rain events were lower than influent

Ammonia as Nitrogen: Stratified

- Stratified columns
 - Ammonia most likely originated in biosolids as organic nitrogen
 - Unsaturated and saturated columns showed similar behavior, but without a discernible pattern

Ammonia as Nitrogen

- Mixed columns
 - First rain event resulted in highest concentrations relative to other 8 rain events
 - Unsaturated and saturated columns showed similar behavior, but without a discernible pattern

Discussion

- As expected, a saturated layer influences nitrate concentrations
 - Saturation does not seem to influence ammonia concentrations
- As expected, high concentrations of ammonia were observed in effluent
 - Consistent with the 2011 study

Conclusion: Goal 1

- Develop a solution to reduce influent nitrogen from stormwater in a rain garden soil mixture
 - Hypothesis: Saturated zone in rain gardens leads to lower concentrations of nitrates in the effluent
 - Columns with saturated zone released ~ 80% less nitrate/nitrites than columns without saturation
 - WTR mixed throughout the soil column released less nitrite/nitrate than stratified column

Conclusion: Goal 2

- Find a productive use for biosolids
 - Hypothesis: The use of a biosolids amendment in rain gardens will increase ammonia in the effluent
 - Our results imply biosolids were a nitrogen source
 - Higher concentrations nitrogen in effluent than influent
 - WTR mixed throughout the soil column released less nitrite/nitrate than stratified column
 - Comparable amounts of ammonia were released in the two types of soil combinations and in the saturated vs. unsaturated columns

Next Steps

- Add plants to rain garden soil study
- Prewash biosolids at the TAGRO plant

Acknowledgements

I would like to thank the donors to the UWT Urban Waters Fund, especially Urban Waters Board members and the Port of Tacoma for supporting this summer's internship program

Additional thanks to:

Alex Gipe

Andy James, Ph.D.

Brian Hite

Connor Bacon

Joel Baker, Ph.D.

Justin Miller-Schulze, Ph.D.

Kurt Marx

UW-Tacoma

http://www.portoftacoma.com/Page.aspx?cid=3218

References

- Adelsman H. Initial Recommendations for Local Source Reduction [Internet]. Department of Ecology [Cited 2012 Sept 09]. Available from: http://www.ecy.wa.gov/water/marine/oa/20120620_localsourcereduction.pdf
- [ISBMP]. International Stormwater Best Management Practices (BMP) Database. 2012. Pollutant Category Summary Statistical Addendum: TSS, Bacteria, Nutrients, and Metals.
- Newton, J. Low Dissolved Oxygen in the Hood Canal [Internet]. Hood Canal Dissolved Oxygen Program; 2012 [Cited 2012 Sept 09]. Available from: http://www.hoodcanal.washington.edu/aboutHC/scienceprimer.jsp
- [NOAA]. National Oceanic and Atmospheric Administration. Water Quality [Internet]. Cited 2012 Sept 09.

 Available from: http://nerrs.noaa.gov/doc/siteprofile/acebasin/html/envicond/watqual/wqintro.htm.
- Rivett MO, S.R. Buss, P. Morganb, J.W.N. Smith, and C.D. Bemment. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research. 2008; 42: 4215-32.

