CAPTURING PHOSPHORUS USING WASTE PRODUCTS IN BIO-RETENTION SYSTEMS

Brian Hite

Research Assistant - CUW
Environmental Science - UWT
Civil and Environmental Engineering - UW

Acknowledgments

I would like to thank:

Joel Baker

Andy James

Kurt Marx

Justin Miller-Schulze

Sharon Hunter

Alex Gipe

Connor Bacon

Rick Fuller

Washington Storm Water Center

The staff working in the labs at the City of Tacoma

© Phase 1

- Rain Garden Soil Mixes
 - Characterization
 - Phosphorus overview

Phase 2

- Year Long Study
 - Capturing phosphorus

Phase 3

- This Summer's Research
 - Combine phase 1 & 2
 - New rain garden design

Storm Water is the Problem

- Water collects contaminants as it flows
- Impermeable surfaces force urban runoff into storm drains

(stancounty.com)

(pugetsoundstartshere.org)

Sources of Pollutants

- Urban Development
- Automobiles

Fecal Matter

Detergents

Lawn Care

Storm Water Impacts

- 75-89% of female Coho Salmon die before spawning upon entering Longfellow Creek
- Eutrophication
 - > 0.05 mg / L of P
- Storm water
 - ≈ 0.30 mg / L of P

(NOAA.gov) (lakescientist.com)

Are Rain Gardens the Solution?

(bhbuilders.com)

Allows water to better infiltrate soil surface

- Filters metal particles and hydrocarbons
- Lessens amount of pollutants that enter rivers and streams

Bio-Retention Soil Mix (BSM)

Storm Water Management Manual for Western WA

60% Sand 40% Compost

Sand used for high infiltration rates

Compost used to fertilize plants

Phase 1 Overview

- Characterization of Media
 - Bio-Retention Soil Mix (BSM)
- Proposed Amendments to BSM
 - City of Tacoma's TAGRO
 - Alternative to compost
 - Water Treatment Residual (WTR)
 - Used to capture phosphorus

TAGRO Garden Mix

 Composed of Class A bio-solids pasteurized to eliminate pathogens

50% Bio-Solids

25% Sand

25% Sawdust

Water Treatment Residuals (WTR)

- 25 50 % Aluminum and Ferric Sulfates (additive)
- 15 25 % Organic Matter (source water)
- 35 50 % Clay / Silt (source water)

(ecy.wa.gov)

Adsorption and Absorption

- WTR captures ortho P through dual process
 - Adsorption Fast process
 - Easily reversible
 - Absorption Slow process as particles dry-out
 - Uptake into matrix of particle

(reefkeeping.com) (intechopen.com)

Soil Mixes

Methods

- Columns dosed with ≈ 2 years storm water
 - 10:1 Drainage : Retention
- Leaching Period To condition media
 - 75 Liters ≈ 1 year storm water
 - 8 Liters twice per week
- Polluting Period To show how it reacts to pollutants
 - 75 Liter ≈ 1 year storm water
 - 4 Liters twice per week
- Sampling 1st Liter of rain event ≈ every 20 Liters

Leaching Period

Cistern water is reject water from making
Deionized water, and runoff from green
roof

(Waterworld.com)

Polluting Period

Sludge to make storm water acquired from City of Tacoma

Wet Sieved < 150µm</p>

≈ 50-300 mg/L TSS

What We Are Looking For

Nutrients and Physical Traits

Major Anions

Alkalinity and pH

Infiltration Rates

Total Phosphorous

Ortho Phosphorus

Total Suspended Solid

Total Kjeldahl Nitrogen

Total Organic Carbon

Dissolved Organic Carbon

Metals (Total and Dissolved)

Aluminum

Arsenic

Cadmium

Copper

Lead

Nickel

Zinc

Ortho - Phosphorus

Causes eutrophication in fresh water

- Sources of ortho phosphorus:
 - Decomposing organic phosphorus in compost and bio-solids
 - Storm water runoff

Ortho - Phosphorus

Infiltration Rates

- Can control the life span of raingarden
- Rain-garden infiltration rates range between 12 to 1 in / hr
- Constant Head Method
 - Darcy's Law formula

Hydrologic Conductivity

Phase 1 Conclusions

Soil Amendments	Ortho - Phosphorous Removal	infiltration Rate Percent Drop (%)
Sand Only	-	76
BSM	-	67
BSM / WTR	+	94
TAGRO Mix	=	64

- WTR retains ≈ 50-60% of Phosphorus
- Infiltration rates slow down regardless of amendments
 - Could be controlled by fine grain particle loading

Phase 2 Phosphorus Amendment

- Stratified Layers Sand / WTR
 - Will adding WTR at high volumes improve or harm rain garden function
- Sampling:
 - Ortho-Phosphorus
 - Infiltration rates

Project Design

- Sand / WTR
- Influent: Synthetic storm water
 - 1 mg/L Nitrogen
 - 0.3 mg/L Phosphorus
- Loading Rate:
 - 4 Liters twice a week
- Sampling:
 - 1st Liter about every 30 Liters

Ortho - Phosphate

Hydrologic Conductivity

Phase 2 Conclusions

Sand / WTR	Ortho - Phosphorus 50 % Breakthrough	Infiltration Rate Percent Drop (%)
90/10	≈ 300 L	42
75/25	≈ 400 L	74
50/50	> 460 L	71

Sand / WTR removes ortho – phosphorus in synthetic storm water ≈ 3 – 5 years

Phase 3 TAGRO / WTR mixes as Alternative to BSM

- Combine Phase 1 & 2 research
 - Balance phosphorus retention Vs. infiltration rates
- Building new rain garden design
 - Stratified WTR Layers vs. Mixed Throughout

Problems

- TAGRO and compost leach nutrients
 - Nitrogen and Phosphorus

Storm Water Management Manual WWA DOES NOT allow Bio-Solids in BSM

Stratified Layers Vs. WTR Mixed Throughout

Methods

- Treatments run in triplicate
- Influent:
 - Synthetic storm water1 mg/L Nitrogen0.3 mg/L Phosphorus
- Loading Rate:
 - 8 Liters / rain event
 - 2 times / week
- Sampling:
 - 1st Liter & 2-8 Liter composite

WTR Stratified or Mixed

Phosphorus Release

Phosphorus in Anoxic Conditions

Saturated Anoxic Layer

TAGRO Hydrologic Conductivity

Conclusion

- WTR may decrease phosphorus in run-off for 3-5 years of storm events
- WTR works better in layers than mixed throughout
- WTR should remain out of anoxic zone
- TAGRO mix may be viable alternative for BSM in tandem with WTR

(westseattleblog.com)

Future Studies

