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Abstract

Privacy-Preserving Text Classification with
Secure Multiparty Computation

Devin Reich

Chair of the Supervisory Committee:
Dr. Martine De Cock

School of Engineering and Technology

Classification of personal text messages has many useful applications in surveillance, e-

commerce, and mental health care, to name a few. Giving applications access to personal

texts can easily lead to (un)intentional privacy violations. We propose the first privacy-

preserving solution for text classification that is provably secure. Our method, which is

based on Secure Multiparty Computation (SMC), encompasses both feature extraction from

texts, and subsequent classification with logistic regression and tree ensembles. We prove

that when using our secure text classification method, the application does not learn anything

about the text, and the author of the text does not learn anything about the text classifi-

cation model used by the application beyond what is given by the classification result itself.

We implemented our method as part of an open source framework for privacy-preserving

machine learning, in the programming languages Java and Rust. We present end-to-end

experiments and a comparative evaluation of the implementations in Java and Rust, with

an application for detecting hate speech against women and immigrants, demonstrating ex-

cellent runtime results without loss of accuracy. As such, our work shows that securely

classifying unstructured text is feasible in real world applications.
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Chapter 1

INTRODUCTION

With the drastic increase in the availability of data and the increase in computational

power that enables the processing of this newly available data, the utility of machine learning

(ML) is unrestricted. For example, healthcare providers use ML to help doctors identify

whether a tumor is benign or malignant. ML can also identify whether or not a tweet

contains hate speech or not; which in turn can help filter out what a user sees. These are

prime examples of how ML has the power to save lives and improve user experience along

with countless other uses.

While ML is extremely powerful, it comes with an Achilles heel: data. In supervised ML,

there are two phases: training and scoring. Both the training of the ML model and using the

trained model to score – or classify – new data points requires access to data. In this thesis we

focus specifically on text classification, namely assigning an unstructured text to a category

with a pre-trained ML classifier. This unstructured text may be personal in nature, such as

medical records, text messages, or personal e-mails, that need to be classified according to

respectively ICD10 codes (for health insurance purposes) [39], or to infer whether the author

is depressed [44], suicidal [40], a terrorist threat [2], or whether the e-mail is a spam message

[3, 47]. Other valuable applications of text message classification include user profiling for

tailored advertising [29], detection of hate speech [6], and detection of cyberbullying [49].

Some of the above are integrated in parental control applications1 that monitor text messages

on the phones of children and alert their parents when content related to drug use, sexting,

suicide etc. is detected. Regardless of the clear benefits, giving applications access to one’s

personal text messages and e-mails can easily lead to (un)intentional privacy violations. In

1https://www.bark.us/, https://kidbridge.com/, https://www.webwatcher.com/
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this thesis, we propose the first privacy-preserving solution for unstructured text classification

that is provably secure in the honest-but-curious setting.

We consider the scenario where there are two parties, Alice and Bob (see Figure 1.1).

Alice has raw text that needs to be classified while Bob has the ML model to score the text.

If Alice were to give her text directly to Bob to be scored, there exists a breach of privacy.

Instead, Bob could give his ML model to Alice and let her score her text. This poses another

privacy concern: what if the model being used in the computations is also private? The

latter is particularly relevant when Bob’s classifier constitutes a competitive advantage, or

in security applications such as spam or hate speech detection, where knowledge of the model

would help adversaries to develop strategies for evading detection.

In this thesis, we propose a secure text classification protocol that allows to classify a

personal text written by Alice with Bob’s ML model in such a way that Bob does not learn

anything about Alice’s text and Alice does not learn anything about Bob’s model. To this

end, we use Secure Multiparty Computation (SMC) [15], a technique in cryptography that

has successfully been applied to various ML tasks with structured data (see e.g. [13, 18, 20, 38]

and references therein). To the best of our knowledge there are no existing differential privacy

(DP) or SMC based solutions for privacy-preserving feature extraction and classification of

unstructured texts; the only existing method is based on Homomorphic Encryption (HE)

and takes 19 minutes to classify a tweet [14] while leaking information about the text being

classified.

To demonstrate the feasibility of our proposed protocol, we perform end-to-end exper-

iments with an application for privacy-preserving detection of hate speech against women

and immigrants in text messages. In this use case, Bob has a trained logistic regression (LR)

or AdaBoost model that flags hateful texts based on the occurrence of particular words. LR

models on word n-grams have been observed to perform comparably to more complex deep

learning architectures for hate speech detection [33]. Using our protocols, Bob can label

Alice’s texts as hateful or not without learning which words occur in Alice’s texts, and Alice

does not learn which words are in Bob’s hate speech lexicon, nor how these words are used in
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Figure 1.1: Roles of Alice and Bob in SMC based text classification

the classification process. Moreover, classification is done in seconds, which is two orders of

magnitude better than the existing HE solution despite the fact we use over 20 times more

features and do not leak any information about Alice’s text to the model owner (Bob). The

solution based on HE leaks which words in the text are present in Bob’s lexicon [14].

We build our protocols using a privacy-preserving machine learning (PPML) framework

based on SMC developed at UW Tacoma2. All the existing building blocks can be com-

posed within themselves or with new protocols added to the framework. On top of existing

building blocks, we also propose a novel protocol for binary classification over binary input

features with an ensemble of decisions stumps. While some of our building blocks have been

previously proposed, the main contribution of this work consists of the careful choice of the

ML techniques, feature engineering and algorithmic and implementation optimizations to

enable end-to-end practical privacy-preserving text classification.

This thesis is structured as follows. In Chapter 2 we recall the necessary preliminaries

regarding text classification in the clear, i.e. without encryption. We present the dataset and

the trained text classifiers that we use later in the thesis to demonstrate the feasibility of our

proposed protocol for secure text classification. In Chapter 3, we introduce the preliminary

background on SMC, including the fundamentals of additive secret sharing, and descriptions

of the cryptographic primitives that we use as building blocks in our secure text classification

protocol. In Chapter 4, we discuss privacy-preserving text classification and we present the

2https://bitbucket.org/uwtppml
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novel protocols that we designed to accomplish this feat. In Chapter 5, we provide details

about two ways in which we implemented the protocols proposed in Chapter 4, namely in the

programming language Java, and in the programming language Rust. We find that, with our

implementations, we can securely classify tweets within seconds, and that the fastest imple-

mentation in the Rust-Lynx framework is 5 times faster than that in Java-Lynx. In Chapter

6, we summarize our conclusions and lay out interesting directions for future work. A correct-

ness and security analysis of the protocols presented in this thesis is provided as an appendix.

Part of this thesis has been published as [45]:

D. Reich, A. Todoki, R. Dowsley, M. De Cock, A. Nascimento. Privacy-

Preserving Classification of Personal Text Messages with Secure Multi-Party

Computation. Advances in Neural Information Processing Systems 32 (NeurIPS),

p. 3752-3764, 2019
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Chapter 2

MACHINE LEARNING FOR
TEXT CLASSIFICATION IN THE CLEAR

2.1 Data Set

In Chapter 5, we evaluate the protocols designed for this thesis in a privacy-preserving

application for detecting whether or not a tweet contains hate speech. The first portion of

the work was to train models on the 2019 SemEval hate speech data set [6]. The corpus

consists of 10,000 tweets, 60% of which are annotated as hate speech against women or

immigrants. We convert all characters to lowercase, and turn each tweet into a set of word

unigrams and bigrams. There are 29,853 distinct unigrams and 93,629 distinct bigrams in

the dataset, making for a total of 123,482 features.

2.2 Models

We use logistic regression (LR) and AdaBoost (AB) ML model architectures with feature

selection. We evaluated the two model architectures chosen, LR and AB, on various feature

spaces of k = 50, 200, and 500 features. The features were chosen by taking the top k

features of a random forest trained on the entire data set, one for unigrams only and one for

unigrams and bigrams combined.

2.2.1 Logistic Regression

A logistic regression (LR) model is a binary classifier that models the posterior probability

P (Y |X) of the class Y given the input feature vector X by fitting a logistic curve (sig-

moid function) to the relationship between X and Y . The probability of class 1 and 0 are
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respectively computed as:

P (Y = 1|X) =
1

1 + exp (w0 +
∑n

i=1wi ·Xi)
(2.1)

P (Y = 0|X) =
exp (w0 +

∑n
i=1wi ·Xi)

1 + exp (w0 +
∑n

i=1wi ·Xi)
(2.2)

where w0,w1, . . . ,wn are model parameters (weights) that are learned from training data.

To obtain the label Y = 0, we need to satisfy:

1 <
P (Y = 0|X)

P (Y = 1|X)
(2.3)

This simplifies to:

1 < exp (w0 +
n∑

i=1

wi ·Xi) (2.4)

Taking the log of both sides, we get:

0 < w0 +
n∑

i=1

wi ·Xi (2.5)

Expression (2.5) can be used directly to perform inference (classification) with a trained

logistic regression model: if, for a given feature vector X and learned weights w0,w1, . . . ,wn,

the expression in the right hand side of (2.5) evaluates to a strictly positive number, then the

model assigns class label 0 to the instance, and class label 1 otherwise. It is this principle

that we leverage later in this thesis for secure classification with a trained logistic regression

model, replacing the computation on the right hand side of (2.5) by doing a secure dot

product (see Chapter 4).

2.2.2 AdaBoost

An AdaBoost model is an ensemble or set of decision trees that are trained in sequence [30].

As with logistic regression, an Adaboost model can be used for classification, i.e. to map an

input vector x = (x1, . . . ,xn) ∈ Rn consisting of n features (in our case: word unigrams and

bigrams) to a class label c1, . . . , ct. To this end, first the input vector x is classified with each



7

individual decision tree in the ensemble. Each internal node of the tree structure tests the

value of a particular feature against a corresponding threshold and branches according to the

results. Each leaf node specifies one of the t classes. The result of the classification based

on an individual decision tree is the class associated with the leaf reached from traversing

the tree. In our case, each internal node checks whether a particular unigram or bigram

is present in the tweet or not, and there are t = 2 class labels, namely whether the tweet

contains hate speech or not.

The decision trees in an Adaboost model are often shallow. In this thesis, we follow the

common practice of using decision tree stumps, i.e. decision trees of depth 1 (a root and a

leaf level). When decision trees are not grown to full depth during training, it is natural

to associate each leaf with a probability of the t classes. In our case, this means that each

leaf contains a probability that the tweet contains hate speech, and a probability that the

tweet does not contain hate speech, with both probabilities in a leaf summing up to 1. Using

k = 50, 200, and 500 features, we create AB models of k binary stumps where each leaf has

a probability for the positive and negative class. In addition, during the training process, a

confidence factor or weight is learned for each decision stump.

During classification, the input vector x is classified with each of the k decision stumps,

resulting in k inferred probability distributions. These k probability distributions are aggre-

gated by taking a weighted sum, where each probability distribution is weighted with the

confidence factor of the tree that produced it. This means that certain decision stumps (fea-

tures) have more impact on the decision of the classification than others. The final predicted

class label is the class label with the highest weighted sum of probabilities.

2.3 Results

Accuracy results for a variety of models trained to classify a tweet as hate speech vs. non-hate

speech are presented in Table 2.1. The models are evaluated using 5-fold cross-validation over

the entire corpus of 10,000 tweets. The top rows in Table 2.1 correspond to tree ensemble

models consisting of 50, 200, and 500 decision stumps respectively; the root of each stump
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Table 2.1: Accuracy (Acc) results using 5-fold cross-validation over the corpus of 10,000
tweets.

Unigrams Unigrams+Bigrams

Acc Acc

Ada; 50 trees; depth 1 71.6% 73.3%

Ada; 200 trees; depth 1 73.0% 74.2%

Ada; 500 trees; depth 1 73.9% 74.4%

Logistic regression (50 feat.) 72.4% 73.8%

Logistic regression (200 feat.) 73.3% 73.7%

Logistic regression (500 feat.) 73.4% 74.2%

corresponds to a feature. The bottom rows contain results for an LR model trained on 50,

200, and 500 features (preselected based on information gain). We ran experiments for feature

sets consisting of unigrams and bigrams, as well as for feature sets consisting of unigrams

only, observing that the inclusion of bigrams leads to a small improvement in accuracy. Note

that designing a model to obtain the highest possible accuracy is not the focus of this thesis.

Instead, our goal is to demonstrate that privacy-preserving text classification based on SMC

is feasible in practice.
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Chapter 3

SECURE MULTIPARTY COMPUTATION AND
CRYPTOGRAPHIC PRIMITIVES

This chapter will cover the basics of SMC, preliminary abstract algebra knowledge, and

the encryption method we use. The description of the encryption will cover the basic crypto-

graphic building blocks of addition and multiplication and the basic protocols we have built

using circuits of additions and multiplications.

3.1 Secure Multiparty Computation

3.1.1 Informal Definition

We consider honest-but-curious adversaries, as is common in SMC based PPML (see e.g. [18,

20]). An honest-but-curious adversary follows the instructions of the protocol, but tries to

gather additional information. Secure protocols prevent the latter.

In SMC, parties work together to jointly compute a function that takes in n private

inputs defined by f(x1,x2, . . . ,xn). Each input x1 . . . xn is encrypted, using additive secret

shares in this thesis, which prevents the parties from learning information about the inputs.

Similarly, the intermediate calculations and the output is also secret shared which means the

data is encrypted from end to end. Note that each function described uses an arbitrary n

inputs to the function. We reuse the variable n as to denote the length of the input vector

but each function’s input vector length is arbitrary and independent of the other functions

described in the thesis.
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3.1.2 Shares

All computations used in this thesis are done over additive secret shares, which is our choice

of encryption for SMC. All shares are integers belonging to the general set, {0, 1, . . . ,m−1},

defined as Zm, where m is the modulus that defines the set. When the integer is a binary

value, we specifically denote that it belongs to the set {0, 1}, defined as Z2. Given an integer

X, where X ∈ Zm, we split X into shares such that the shares Xi satisfy the equation

X =
∑k

i=1Xi mod m. Each share Xi is generated at random to ensure that any particular

share reveals no information about X. This scheme works for k parties and the parties can

reveal X by summing each Xi mod m.

We break down all protocols into circuits of secure multiplications and additions. If we

can successfully break down a function into secure multiplications and additions, then the

whole function will be secure. Note from this point on, we will consider the case where k = 2

as our framework was tested with 2 parties and the examples are easier to write with only

two parties; however, our protocols extend to an arbitrary k parties.

3.1.3 Asymmetric Bit

Out of the k parties, one party will be designated to have an asymmetric bit, defined 1 if

the party has it; otherwise the value is a 0. We will denote this bit as b̂. This bit allows us

to add constants and perform protocols that only one party needs to do a computation for.

In our two party computations, we will let Alice be the party with the asymmetric bit.

3.1.4 Secure Addition

Alice and Bob start with random shares XA, YA, XB and YB that are respectively Alice and

Bob’s shares of X and Y . Alice and Bob can locally add up their shares of X and Y . When

recombined, the actual sum of X and Y is revealed.

Example 1. Let X = 2, Y = 3 and m = 7. Let XA = 4, XB = 5 which satisfies X = XA

+ XB mod m and let YA = 1, YB = 2 which satisfies Y = YA + YB mod m. Then Alice
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and Bob can add up

ZA = (XA + YA mod m) = (4 + 1 mod m) = 5

and

ZB = (XB + YB mod m) = (5 + 2 mod m) = 0

To reveal Z, they can compute 5 + 0 mod m = 5. Notice in the clear Z = X+Y = 2+3 = 5.

Therefore, Alice and Bob securely computed Z without revealing the actual values of X and

Y .

3.1.5 Secure Multiplication and Beaver Triples

The second secure building block is secure multiplication. Consider Alice and Bob have the

same X and Y and the same shares of X and Y as in the previous example. They want to

compute

Z = X · Y

= (XA +XB) · (YA + YB)

= XA · YA +XA · YB +XB · YA +XB · YB

Notice the middle terms XA · YB and XB · YA require that either Alice or Bob gives up one

their shares in order to make this computation. This means the protocol as is defined above

is insecure because whoever receives the share could recover the actual value of X or Y .

To avoid this break in privacy, we use Beaver triples [7] to mask information about X

and Y which allows us to complete the multiplication securely. Beaver triples are defined as

three randomly generated numbers, U ,V , and W . Each are split into random shares such

as X and Y ; however there is an extra constraint on W such that W = U · V . The protocol

follows as such:

1. Locally compute D = X − U ; E = Y − V ; open D and E

2. Locally compute Z = W + E · U +D · V +D · E · b̂
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Note that “opening” a vector means that all parties send their shares to one another so

that each party can reconstruct the secret and learn the real data. The actual value that

was being masked is the opened value. For the case of D above, Alice and Bob would share

their values to get D = DA +DB mod m.

Example 2. Let m = 8. Let X = 3, where XA = 1 and XB = 2. Let Y = 2, where YA =

0 and YB = 2. Let U = 1, where UA = 1 and UB = 0. Let V = 1, where VA = 0 and VB =

1. Let W = U · V = 1 · 1 = 1, where WA = 0 and WB = 1.

1.

DA = 1− 1 = 0

and

DB = 2− 0 = 2

EA = 0− 0 = 0

and

EB = 2− 1 = 1

Open D and E

D = 0 + 2 mod m = 2

and

E = 0 + 1 mod m

2.

ZA = 0 + 1 · 1 + 2 · 0 + 2 · 1 · 1 = 3

ZB = 1 + 1 · 0 + 2 · 1 + 2 · 1 · 0 = 3

Z = 3 + 3 mod m = 6

which in fact is 3 · 2.
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3.1.6 Bitwise And

Bitwise “and” (logical conjunction, denoted by &) is just like the multiplication protocol

but the Beaver triples satisfy an exclusive “or” operation, denoted by ⊕, instead of a sum.

The means the integers are shared by satisfying X = X0 ⊕X1 ⊕ . . . ⊕Xk. W is randomly

generated while satisfying V&U instead of a multiplication of the two. The protocol is as

follows:

1. Locally compute D = X ⊕ U ; E = Y ⊕ V ; open D and E

2. Locally compute Z = W ⊕ (E&U)⊕ (D&V )⊕ (D&E&b̂)

Example 3. Let m = 8. Let X = 3, where [[XA]]m = 4 and XB = 7. Let Y = 2, where YA

= 0 and YB = 2. Let U = 1, where UA = 1 and UB = 0. Let V = 1, where VA = 0 and VB

= 1. Let W = U&V = 1&1 = 1, where WA = 0 and WB = 1.

1.

DA = 4⊕ 1 = 5

and

DB = 7⊕ 0 = 7

EA = 0⊕ 0 = 0

and

EB = 2⊕ 1 = 3

Open D and E

D = 5⊕ 7 mod m = 2

and

E = 0⊕ 3 mod m = 3
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2.

ZA = 0⊕ (3&1)⊕ (2&0)⊕ (2&3&1) = 0

ZB = 1⊕ (3&0)⊕ (2&1)⊕ (2&3&0) = 1

Z = 3&2 mod m = 0

which in fact is 3&2.

3.1.7 Trusted Initializer

In our computations, we use what is known as a Trusted Initializer (TI). This TI will generate

all of the necessary Beaver triples in advance in order to speed up total running time. When

ready to participate in the computations, Alice and Bob will first connect to the TI and the

TI will send over each party’s shares of the triples. Once all shares are received, the parties

can participate in the computations and the TI disconnects from the parties and is no longer

a part of the protocols.

3.2 Basic Protocols

3.2.1 Batch Multiplication

In a single multiplication, we compute and open D and E. This means for every multipli-

cation, there needs to be a communication between the parties in order to open D and E.

The only difference in batch multiplication is we locally compute a batch size, b, worth of

D and E, where b is defined specifically for the needs of a specific model being run. Then

in a single communication, the parties open b shares of D and E. This reduces the required

connections from b times to 1, trading the number of times connecting to a socket for payload

size. Each socket connection takes time to establish the connection which means we save

time by performing a batch multiplication. The input to this protocol is two vectors, an X

and a Y vector, of numbers to be multiplied where (x1,x2, . . . ,xn) and (y1, y2, . . . , yn), where
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the X and Y vectors are split as secret shares among the parties. X and Y are multiplied

in a pairwise manner to return a vector of secret shares of (x1 · y1,x2 · y2, . . . ,xn · yn).

3.2.2 Batch Bitwise And

Similar to Batch Multiply, we compute multiple Bitwise And operations in a single batch and

send them over in one communication. This saves time and allows us to work with vectors

of integers at a time.

3.2.3 Parallel Multiplication

Parallel multiplication takes in a vector of numbers and multiplies them pairwise until there

is a single number left. In other words, we take a vector (x1,x2, . . . ,xn) and multiply it

together resulting in x1 · x2 · . . . · xn. Our specific implementation splits the vector in half

and applies batch multiplication on the two halves repeatedly to get the result. This means

we take (x1,x2, . . . ,xn) and split it into (x1,x2, . . . ,xn/2) and (x(n/2+1), . . . ,xn) as the x

and y vectors of batch multiplication respectively. The run time of this is Θ(log(n)) as we

parallelized each iteration through batch multiplication and each iteration cuts the remaining

number of elements to be multiplied in half.

3.2.4 Dot Product

The dot product will return the secret shared dot product of two secret shared vectors,

X =(x1,x2, . . . ,xn) and Y =(y1, y2, . . . , yn). The result is secret shares of x1 · y1 + x2 · y2 +

. . .+ xn · yn.

1. Jointly compute Z = BatchMultiply(X,Y )

2. Locally compute the shares of the result: z =
∑n

i=1[[Zi]]m

Example 1. Let vector X = (3, 2, 7) and vector Y = (1, 3, 2) then X ·Y = 3·1+2·3+7·2 =

3 + 6 + 14 = 23.
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1. Let Alice’s shares be XA = (1, 0, 6) and YA = (0, 2, 1). Let Bob’s shares be XB =

(2, 2, 1) and YB = (1, 1, 1). Say that after the batch multiplication, Alice’s shares are

ZA = (1, 4, 10) and Bob’s shares are ZB = (2, 2, 4).

2. Alice and Bob locally sum up their shares to get zA = 1 + 4 + 10 = 15 and zB =

2 + 2 + 4 = 8.

3.2.5 Exclusive Or

The xor protocol takes two lists of secret shared integers [X] and [Y ] and returns the xor of

the two numbers. The protocol is as follows:

1. Jointly compute Z = BatchMultiply(X,Y )

2. Locally compute the share of the result: X + Y − (2 · Z)

Example 2. To make the example easier to understand, we will do the xor on a single

integer rather than a list, but the following operations would be done on every element of the

inputted integer lists. All operations are done over integer values. The binary representations

are included in the example purely for the purpose of illustrations. Let X = 2 and Y = 3,

then the bits of X are (0, 1, 0) and the bits of Y are (0, 1, 1) which means the xor should be

shares of (0, 0, 1).

Let XA = 1, XB = 1, YA = 0 and YB = 3. Let Z = X · Y = 6.

1. After batch multiplication, let ZA = 2 and ZB = 4.

2. Alice locally computes 1 + 0 − (2 · 2) = −3 = (1, 0, 1) and Bob locally computes

3 + 1− (2 · 4) = −4 = (1, 0, 0). (1, 0, 1) xor (1, 0, 0) are additive shares of (0, 0, 1)
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Chapter 4

PRIVACY PRESERVING TEXT CLASSIFICATION

4.1 Overview

Our general protocol for privacy-preserving (PP) text classification relies on several building

blocks that are used together to accomplish Step 1 in Fig. 1.1: a secure equality test, a secure

comparison test, private feature extraction, secure protocols for converting between secret

sharing modulo 2 and modulo q > 2, and private classification protocols. Several of these

building blocks have been proposed in the past. However, to the best of our knowledge, this

is the very first time they are combined in order to achieve efficient text classification with

provable security.

We assume that Alice has a personal text message, and that Bob has a Logistic Regres-

sion (LR) or AdaBoost classifier that is trained on unigrams and bigrams as features, as

explained in Chapter 2. Alice constructs the set A = {a1, a2, . . . , am} of unigrams and bi-

grams occurring in her message, and Bob constructs the set B = {b1, b2, . . . , bn} of unigrams

and bigrams that occur as features in his machine learning (ML) model. We assume that all

aj and bi are in the form of bit strings. To achieve this, Alice and Bob convert each unigram

and bigram on their end to a number N using SHA 224 [42], strictly for its ability to map

the same inputs to the same outputs in a pseudo-random manner. Next Alice and Bob map

each N on their end to a number between 0 and 2l − 1, i.e. a bit string of length l, using a

random function in the universal hash family proposed by Carter and Wegman [11].1 In the

remainder we use the term “word” to refer to a unigram or bigram, and we refer to the set

B = {b1, b2, . . . , bn} as Bob’s lexicon.

1The hash function is defined as ((a · N + b) mod p) mod 2l − 1 where p is a prime and a and b are
random numbers less than p. In our experiments in Chapter 5, p = 1, 301, 081, a = 972, and b = 52, 097.
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Below we outline the protocols for PP text classification. A correctness and security

analysis of the protocols is provided as an appendix. In the description of the protocols in

this chapter, we assume that Bob needs to learn the result of the classification, i.e. the class

label, at the end of the computations. It is important to note that the protocols described

below can be straightforwardly adjusted to a scenario where Alice instead of Bob has to learn

the class label, or even to a scenario where neither Alice nor Bob should learn what the class

label is and instead it should be revealed to a third party or kept in a secret sharing form.

All these scenarios might be relevant use cases of PP text classification, depending on the

specific application at hand.

4.2 Cryptographic Protocols

Secure Equality Test: At the start of the secure equality test protocol, Alice and Bob

have secret shares of two bit strings x = x` . . . x1 and y = y` . . . y1 of length `. x corresponds

to a word from Alice’s message and y corresponds to a feature from Bob’s model. The bit

strings x and y are secret shared over Z2. Alice and Bob follow the protocol to determine

whether x = y. The protocol πEQ outputs a secret sharing of 1 if x = y and of 0 otherwise.

Protocol πEQ:

• For i = 1, . . . , `, Alice and Bob locally compute [[ri]]2 ← [[xi]]2 + [[yi]]2 + 1.

• Alice and Bob use secure multiplication to compute a secret sharing of z = r1 ·r2 ·. . .·r`.

If x = y, then ri = 1 for all bit positions i, hence z = 1; otherwise some ri = 0 and

therefore z = 0. The result is the secret sharing [[z]]2, which is the desired output of

the protocol.

This protocol for equality test is folklore in the field of SMC. The l − 1 multiplications

can be organized as binary tree with the result of the multiplication at the root of the tree.

In this way, the presented protocol has log(l) rounds. While there are equality test protocols
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that have a constant number of rounds, the constant is prohibitively large for the parameters

used in our implementation.

Secure Feature Vector Extraction: At the start of the feature extraction protocol,

Alice has a set A = {a1, a2, . . . , am} and Bob has a set B = {b1, b2, . . . , bn}. A is a set of bit

strings that represent Alice’s text, and B is a set of bit strings that represent Bob’s lexicon.

Bob would like to extract words from Alice’s text that appear in his lexicon. At the end of

the protocol, Alice and Bob have secret shares of a binary feature vector x which represents

what words in Bob’s lexicon appear in Alice’s text. The binary feature vector x of length n

is defined as

xi =

 1 if bi ∈ A

0 otherwise
(4.1)

Protocol πFE:

• Alice and Bob secret share each aj (j = 1, . . . ,m) and each bi (i = 1, . . . ,n) with each

other.

• For i = 1 . . . n: // Computation of secret shares of xi as defined in Equation (4.1).

For j = 1 . . .m:

Alice and Bob run the secure equality test protocol πEQ to compute secret shares

xij = 1 if aj = bi; xij = 0 otherwise (4.2)

Alice and Bob locally compute the secret share [[xi]]2 ←
∑m

j=1[[xij]]2.

The secure feature vector extraction can be seen as a private set intersection where the

intersection is not revealed but shared [12, 28]. Our solution πFE is tailored to be used

within the privacy-preserving machine learning (PPML) framework presented in Chapter 5

(it uses only binary operations, it is secret sharing based, and is based on pre-distributed

binary multiplications). In principle, other protocols could be used here. The efficiency of
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our protocol can be improved by using hashing techniques [43] at the cost of introducing

a small probability of error. The improvements due to hashing are asymptotic and for the

parameters used in our fastest running protocol these improvements were not noticeable.

Thus, we restricted ourselves to the original protocol without hashing and without any

probability of failure.

Secure Comparison Test: In our privacy-preserving AdaBoost classifier we will use a

secure comparison protocol as a building block. At the start of the secure comparison test

protocol, Alice and Bob have secret shares over Z2 of two bit strings x = x` . . . x1 and

y = y` . . . y1 of length `. They run the secure comparison protocol πDC of Garay et al. [32]

with secret sharings over Z2 and obtain a secret sharing of 1 if x ≥ y and of 0 otherwise.

Secure Conversion between Zq and Z2: Some of our building blocks perform compu-

tations using secret shares over Z2 (secure equality test, comparison and feature extraction),

while the secure inner product (dot product) works over Zq for q > 2. In order to be able to

integrate these building blocks we need:

• A secure bit-decomposition protocol for secure conversion from Zq to Z2: Alice and Bob

have as input a secret sharing [[x]]q and without learning any information about x they

should obtain as output secret sharings [[xi]]2, where x` · · · x1 is the binary representation

of x. To this end, we use protocol πdecomp:

ai =

 xi if b̂ = 1

0 otherwise
(4.3)

bi =

 0 if b̂ = 1

xi otherwise
(4.4)

[[c1]]←Multiply(a1, b1)

[[yi]] = [[xi]]

For i← 2 · · · `
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[[di]]←Multiply(ai, bi) + 1

[[ei]]←Multiply(yi, ci−1) + 1

[[ci]]←Multiply(ei, di) + 1

[[xi]]← [[yi]] + [[ci−1]]

END

return [[xi]]

• A protocol for secure conversion from Z2 to Zq: Alice and Bob have as input a secret sharing

[[x]]2 of a bit x and need to obtain a secret sharing [[x]]q of the binary value over a larger

field Zq without learning any information about x. To this end, we use protocol π2toQ:

– For the input [[x]]2, let xA ∈ {0, 1} denote Alice’s share and xB ∈ {0, 1} denote Bob’s

share.

– Alice creates a secret sharing [[xA]]q by picking uniformly random shares that sum to xA

and delivers Bob’s share to him, and Bob proceeds similarly to create [[xB]]q.

– Alice and Bob compute [[y]]q ← [[xA]]q[[xB]]q.

– The output is computed as [[z]]q ← [[xA]]q + [[xB]]q − 2[[y]]q.

Secure Logistic Regression (LR) Classification: At the start of the secure LR classi-

fication protocol, Bob has a trained LR model M that requires a feature vector x of length

n as its input, and produces a label M(x) as its output. Alice and Bob have secret shares

of the feature vector x which represents what words in Bob’s lexicon appear in Alice’s text.

At the end of the protocol, Bob gets the result of the classification M(x). Protocol πLR for

secure classification with LR models is a follows:

• Input secret shared binary feature vector (x0, · · · ,xn), model thresholds (y0, · · · , yn),

and an intercept b

• Let xor be the converted the feature vector using π2toQ

• [[d]] = DotProduct(y,xor) + b
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• Let decomp = πdecomp([[d]])

• Let zero = the a bit string of the integer 2m − 1

• return πDC(decomp, zero)

Secure AdaBoost Classification: The setting is the same as above, but the modelM is

an AdaBoost ensemble of decision stumps instead of a LR model. While efficient solutions for

secure classification with tree ensembles were previously known [31], we can take advantage

of specific facts about our use case to obtain a more efficient solution. In more detail, in

our use case: (1) all the decision trees have depth 1 (i.e., decision stumps); (2) each feature

xi is binary and therefore when it is used in a decision node, the left and right children

correspond exactly to xi = 0 and xi = 1; (3) the output class is binary; (4) the feature values

were extracted in a PP way and are secret shared so that no party alone knows their values.

We can use the above facts in order to perform the AdaBoost classification by computing

two inner products and then comparing their values.

Protocol πAB:

• Alice and Bob hold secret sharings [[xi]]q of each of the n binary features xi. Bob

holds the trained AdaBoost model which consists of two weighted probability vectors

y = (y1,0, y1,1, . . . , yn,0, yn,1) and z = (z1,0, z1,1, . . . , zn,0, zn,1). For the i-th decision

stump: yi,k is the weighted probability (i.e., a probability multiplied by the weight of

the i-th decision stump) that the model assigns to the output class being 0 if xi = k,

and zi,k is defined similarly for the output class 1 (see Fig. 4.1).

• Bob secret shares the elements of y and z, and Alice and Bob locally compute secret

sharings [[w]]q of the vector w = (1− x1,x1, 1− x2,x2, . . . , 1− xn,xn).

• Using the secure inner product protocol πIP, Alice and Bob compute secret sharings of

the inner product p0 between y and w, and of the inner product p1 between z and w.
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x1

0 : y1,1

1 : z1,1

0 : y1,0

1 : z1,0

x1 = 0 x1 = 1

...

xi

0 : yi,1

1 : zi,1

0 : yi,0

1 : zi,0

xi = 0 xi = 1

...

xn

0 : yn,1

1 : zn,1

0 : yn,0

1 : zn,0

xn = 0 xn = 1

Figure 4.1: Ensemble of decision stumps. Each root corresponds to a feature xi. The leaves
contain weights yi,k for the votes for class label 0 and weights zi,k for the votes for class label
1.

p0 and p1 are the aggregated votes for class label 0 and 1 respectively.

• Alice and Bob use πdecomp to compute bitwise secret sharings of p0 and p1 over Z2.

• Alice and Bob use πDC to compare p1 and p0, getting as output a secret sharing of the

output class c, which is then opened towards Bob.

To the best of our knowledge, this is the most efficient provably secure protocol for binary

classification over binary input features with an ensemble of decisions stumps.

4.2.1 Privacy-preserving classification of personal text messages

We now present our novel protocols for PP text classification. They result from combining

the cryptographic building blocks we introduced previously. The PP protocol πTC−LR for

classifying the text using a logistic regression model works as follows:

Protocol πTC−LR:

• Alice and Bob execute the secure feature extraction protocol πFE with input sets A and

B in order to obtain the secret shares JxiK2 of the feature vector x.

• They run the protocol π2toQ to obtain shares JxiKq over Zq.
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• Alice and Bob run the secure logistic regression classification protocol πLR in order to

get the result of the classification. The LR model M is given as input to πLR by Bob,

and the secret shared feature vector x by both of them. Bob gets the result of the

classification M(x).

The privacy-preserving protocol πTC−AB for classifying the text using AdaBoost works as

follows:

Protocol πTC−AB:

• Alice and Bob execute the secure feature extraction protocol πFE with input sets A and

B in order to obtain the secret shares JxiK2 of the feature vector x.

• They run the protocol π2toQ to obtain shares JxiKq over Zq.

• Alice and Bob run the secure AdaBoost classification protocol πAB to obtain the result

of the classification. The secret shared feature vector x is given as input to πAB by

both of them, and the two weighted probability vectors y = (y1,0, y1,1, . . . , yn,0, yn,1)

and z = (z1,0, z1,1, . . . , zn,0, zn,1) that constitute the model are specified by Bob. Bob

gets the output class c.

Detailed proofs of security are presented in the appendix.
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Chapter 5

IMPLEMENTATIONS AND RESULTS

5.1 Lynx in Java

5.1.1 Overview

Lynx1 is an open source framework for privacy-preserving machine learning (PPML) devel-

oped and maintained at UW Tacoma. The original version of Lynx was developed in Java. It

uses a command line interface and is organized around three different entities. These entities

are the broadcast agent, trusted initializer, and the computing parties.

The broadcast agent is the intermediate entity to receive and broadcast the communica-

tions to the correct computing parties. It is used to reduce the communication cost from

n(n− 1) to 2n. If there are n parties, there will be two kinds of communications, one to the

broadcast agent and one from the broadcast agent to the destination (2n), instead of the

n(n − 1) communications which would result from every computing party having to com-

municate to every other party participating in the computations. This organization around

a broadcast agent is very meaningful in the setting in which it was first developed, namely

to facilitate SMC with a high number of computing parties [1]. Our use case, secure text

classification, inherently involves only two parties, namely the party who has the text to be

classified (Alice) and the party with the machine learning model that can do the classification

(Bob).

The Java-Lynx framework also uses a trusted initializer (TI) which generates all of the

Beaver triples needed for the executions of the secure multiplication protocol. The parties

connect to the initializer to receive their shares of the correlated randomness (the Beaver

1https://bitbucket.org/uwtppml/lynx
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triples). Once all such shares are distributed, the initializer’s job is done and it goes offline.

The final entity are the computing parties. These entities are the parties that execute the

protocols and use their resources to perform the computations. These are the workforce of

the framework.

5.1.2 Secure Text Classification in Java-Lynx

The protocols used in this thesis are listed below, with a reference to their implementations

in Java-Lynx. Byte, Integer and Real correspond to what the inputs represent, integer being

integer values, byte being binary values and real being a decimal number converted to an

integer with finite precision.

• Multiplication: MultiplicationByte.java, MultiplicationInteger.java, MultiplicationReal.java

• Batch Multiplication: BatchMultiplicationByte.java, BatchMultiplicationInteger.java,

BatchMultiplicationReal.java

• Parallel Multiplication: ParallelMultiplication.java

• Dot Product: DotProduct.java

• Exclusive Or: OR XOR.java

• Secure Equality Test πEQ: EqualityByte.java

• Secure Feature Vector Extraction πFE: PrivateSetIntersection.java

• Secure Comparison Test πDC: Comparison.java

• Secure Bit Decomposition πdecomp: BitDecomposition.java

• Secure Logistic Regression Classification πLR: LogisticRegressionScoring.java

• Secure AdaBoost Classification πAB: BinaryAdaboostScoring.java
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5.2 Lynx in Rust

5.2.1 Overview

Rust-Lynx uses the same architecture as Java-Lynx with the exception of the broadcast

agent. We opted to use a 2-party system instead of n parties. Since both versions used two

parties, we can figure out the communication cost of the network. With the broadcast agent,

we had 2n = 2(2) = 4 communications in order to transfer a shares during the multiplication

protocol. Without the broadcast agent, we have n(n − 1) = 2(2 − 1) = 2 communications.

This means for our specific feature extraction protocols using 2 parties, we significantly

reduce the communication costs by eliminating the broadcast agent.

Another optimization comes from the language of Rust. Rust is a lower level language

which means it runs closer to the hardware and is faster by nature. Additionally, Java is

object oriented which means we use classes and make function calls on the classes which

result in a memory location being called and then another lookup for the function. Our

Rust implementation, on the other hand, uses function and eliminates the step of storing

and retrieving the class information.

In Lynx computations are done using a modulus, m. This modulus is used as the basis

of the additive secret sharing. m can be any integer which we exploit using Rust. In

the Rust framework, we use the Wrapping class on the primitive integers to allow the free

computation of the modulus. We pick m to be the bit size of the processor. This means for

a 64 bit processor, we choose m to be 64 and then instead of the computation, Rust allows

the bits to overflow and disregard them, essentially removing the calculation of the modulus.

5.2.2 Secure Text Classification in Rust-Lynx

Below are the protocols added to the Rust-Lynx repository:

• Batch Multiplication: batch multiply

• Parallel Multiplication: parallel mult
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• Dot Product: dot product

• Exclusive Or: xor

• Secure Equality Test πEQ: equality byte

• Secure Feature Vector Extraction πFE: private set intersection

• Bitwise And: batch bitwise and

• Secure Comparison Test πDC: compare

• Secure Bit Decomposition πdecomp: batch bit decomp

• Secure Logistic Regression Classification πLR: logistic regression

• Secure AdaBoost Classification πAB: binary ada boost

5.3 Results

We evaluate the proposed protocols in a use case for the detection of hate speech in short

text messages, using data from [6]. As explained in Chapter 2, the corpus consists of 10,000

tweets, 60% of which are annotated as hate speech against women or immigrants. We convert

all characters to lowercase, and turn each tweet into a set of word unigrams and bigrams.

There are 29,853 distinct unigrams and 93,629distinct bigrams in the dataset, making for a

total of 123,482 features.

Accuracy results for a variety of models trained to classify a tweet as hate speech vs. non-

hate speech are presented in Table 1. The models are evaluated using 5-fold cross-validation

over the entire corpus of 10,000 tweets. The top rows in Table 1 correspond to tree ensemble

models consisting of 50, 200, and 500 decision stumps respectively; the root of each stump

corresponds to a feature.The bottom rows contain results for an LR model trained on 50, 200,

and 500 features (preselected based on information gain). We ran experiments for feature
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sets consisting of unigrams and bigrams, as well as for feature sets consisting of unigrams

only,observing that the inclusion of bigrams leads to a small improvement in accuracy. Note

that designing a model to obtain the highest possible accuracy is not the focus of this paper.

Instead, our goal is to demonstrate that privacy-preserving text classification based on SMC

is feasible in practice.

For both our implementations in Java-Lynx and Rust-Lynx, we ran experiments on AWS

c5.9xlarge machines with 36 vCPUs, 72.0 GiB Memory. 2 Each of the parties ran on separate

machines (connected with a Gigabit Ethernet network), which means that the results in

Table 5.1 and 5.2 cover communication time in addition to computation time. Each runtime

experiment was repeated 3 times and average results are reported. In Table 5.1 and 5.2

we report the time (in sec) needed for converting a tweet into a feature vector (Extr), for

classification of the feature vector (Class), and for the overall process (Tot).

Our results showed that for all hyper-parameter choices of the models, our Rust-Lynx im-

proved the runtimes over Java-Lynx except for the case of logistic regression using unigrams

and bigrams with 500 features where we tied the Java results. However, it is important

to note that while the scoring times were significantly faster in Rust-Lynx, the feature ex-

traction was actually slower. This is due to the fact that we made a decision to transfer

all batch multiplications on a single thread so we wouldn’t have to deal with syncing party

communications over different threads. The Java-Lynx library had an executor service that

managed this which was not available in our current build of Rust. Hence, the faster feature

extraction in Java-Lynx came from the fact that the batch multiplication was parallelized

using threads and the feature extraction is dominated by comparisons, which relies heavily

on multiplications.

2https://bitbucket.org/uwtppml
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Table 5.1: Accuracy (Acc) results using 5-fold cross-validation over the corpus of 10,000
tweets. Total time (Tot) needed to securely classify a text with our Java framework,
broken down in time needed for feature vector extraction (Extr) and time for feature vector
classification (Class).

Java-Lynx Unigrams Unigrams+Bigrams

Acc Time (in sec) Acc Time (in sec)

Extr Class Tot Extr Class Tot

Ada; 50 trees; depth 1 71.6% 0.8 6.4 7.2 73.3% 1.5 6.6 8.1

Ada; 200 trees; depth 1 73.0% 2.8 6.4 9.2 74.2% 9.4 6.6 16.0

Ada; 500 trees; depth 1 73.9% 6.6 6.7 13.3 74.4% 21.6 6.7 28.3

Logistic regression (50 feat.) 72.4% 0.8 3.7 4.5 73.8% 1.5 3.8 5.3

Logistic regression (200 feat.) 73.3% 2.8 3.7 6.5 73.7% 9.4 3.8 13.2

Logistic regression (500 feat.) 73.4% 6.6 3.8 10.4 74.2% 21.6 4.1 25.7

Table 5.2: Accuracy (Acc) results using 5-fold cross-validation over the corpus of 10,000
tweets. Total time (Tot) needed to securely classify a text with our Rust framework,
broken down in time needed for feature vector extraction (Extr) and time for feature vector
classification (Class).

Rust-Lynx Unigrams Unigrams+Bigrams

Acc Time (in sec) Acc Time (in sec)

Extr Class Tot Extr Class Tot

Ada; 50 trees; depth 1 71.6% 0.925 0.062 0.987 73.3% 2.583 0.064 2.647

Ada; 200 trees; depth 1 73.0% 3.652 0.062 3.714 74.2% 9.915 0.062 9.977

Ada; 500 trees; depth 1 73.9% 9.227 0.066 9.293 74.4% 25.685 0.066 25.751

Logistic regression (50 feat.) 72.4% 0.915 0.038 0.953 73.8% 2.583 0.041 2.624

Logistic regression (200 feat.) 73.3% 3.652 0.039 3.691 73.7% 9.915 0.042 9.957

Logistic regression (500 feat.) 73.4% 9.227 0.041 9.268 74.2% 25.685 0.041 25.726
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Chapter 6

CONCLUSIONS

In this thesis we have presented the first provably secure method for privacy-preserving

(PP) classification of unstructured text. The appendix contains and analysis of the correct-

ness and security of our solution. As a side result, we have also presented a novel protocol

for binary classification over binary input features with an ensemble of decisions stumps.

Two implementations of the protocols in Java and Rust, run on AWS machines, allowed

us to classify text messages securely within seconds. It is important to note that this run time

(1) includes both secure feature extraction and secure classification of the extracted feature

vector; (2) includes both computation and communication costs, as the parties involved in

the protocol were run on separate machines; (3) is two orders of magnitude better than the

only other existing solution, which is based on HE.

Our results show that in order to make PP text classification practical, one needs to pay

close attention not only to the underlying cryptographic protocols but also to the underlying

ML algorithms. ML algorithms that would be a clear choice when used in the clear might

not be useful at all when transferred to the SMC domain. One has to optimize these ML

algorithms having in mind their use within SMC protocols. Our results provide the first

evidence that provably secure PP text classification is feasible in practice.



32

BIBLIOGRAPHY

[1] Anisha Agarwal, Rafael Dowsley, Nicholas D McKinney, Dongrui Wu, Chin-Teng Lin,
Martine De Cock, and Anderson CA Nascimento. Protecting privacy of users in brain-
computer interface applications. IEEE Transactions on Neural Systems and Rehabilita-
tion Engineering, 27(8):1546–1555, 2019.

[2] Peter Ray Allison. Tracking terrorists online might invade your privacy. BBC,
http://www.bbc.com/future/story/20170808-tracking-terrorists-online-might-invade-
your-privacy, 2017.
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preserving distributed clustering based on secret sharing. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 280–291. Springer, 2007.

[39] Fei Li and Hong Yu. ICD coding from clinical text using multi-filter residual con-
volutional neural network. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence, 2020.

[40] Bridianne O’Dea, Stephen Wan, Philip J. Batterham, Alison L. Calear, Cecile Paris, and
Helen Christensen. Detecting suicidality on Twitter. Internet Interventions, 2(2):183–
188, 2015.

[41] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In Crypto 2008, pages 554–571, 2008.

[42] Wouter Penard and Tim van Werkhoven. On the secure hash algorithm family. In
Cryptography in Context, pages 1–18. 2008.



36

[43] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection
based on OT extension. ACM Transactions on Privacy and Security (TOPS), 21(2):7,
2018.

[44] Andrew G. Reece, Andrew J. Reagan, Katharina L.M. Lix, Peter Sheridan Dodds,
Christopher M. Danforth, and Ellen J. Langer. Forecasting the onset and course of
mental illness with Twitter data. Scientific Reports, 7(1):13006, 2017.

[45] Devin Reich, Ariel Todoki, Rafael Dowsley, Martine De Cock, and Anderson Nasci-
mento. Privacy-preserving classification of personal text messages with secure multi-
party computation. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
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Appendix A

CORRECTNESS AND SECURITY ANALYSIS OF
PROTOCOLS

A.1 Security Model

The gold standard model for proving the security of cryptographic protocols nowadays is

the Universal Composability (UC) framework [8] and it is the security model that we use in

this work. Protocols that are proven UC-secure enjoy strong securities guarantees and can

be arbitrary composed without compromising the security. In short, it is the most adequate

model to use when the protocols need to be executed in complex environments such as

the Internet, and it additionally allows a modular design of bigger protocols. In this work

protocols with two parties, Alice and Bob, are considered and in the following we present an

overview of the UC framework for this setting. We refer interested readers to the book of

Cramer et al. [15] for more details and the most general definitions.

Apart from the protocol participants, Alice and Bob, there are also an adversary A, an

ideal world adversary S (also known as the simulator) and an environment Z (which captures

everything that happens outside of the instance of the protocol that is being analyzed, and

therefore is the one giving the inputs and getting the outputs from the protocol). All these

entities are assumed to be interactive Turing machines. The network is assumed to be under

adversarial control and therefore A is the one that delivers the messages between Alice and

Bob. In addition to controlling the network scheduling, A can also corrupt Alice or Bob,

in which case he gains the total control over the corrupted party and learn its complete

state. For defining the security of the protocol, an ideal functionality F is defined, which

captures the idealized version of what the protocol is supposed to achieve and communicates

directly with Alice and Bob to receive the inputs and delivering the outputs of the protocol
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(in the ideal world, that is all that Alice and Bob do). Then to prove the security of the

protocol π, we show that for every possible adversary A there exists a simulator S such that

no environment Z can distinguish between a real world execution with Alice, Bob and the

adversary A running the protocol π and the ideal world execution with the ideal functionality

F , the simulator S and the dummy version of Alice and Bob that just forward the inputs

and outputs between F and S. Formally:

Definition A.1.1 ([8]) A protocol π UC-realizes an ideal functionality F if, for every pos-

sible adversary A, there exists a simulator S such that, for every possible environment Z,

the view of the environment Z in the real world execution with A, Alice and Bob executing

the protocol π (with security parameter λ) is computationally indistinguishable from the view

of Z in the ideal world execution with the functionality F , the simulator S and the dummy

Alice and Bob, where the probability distribution is taken over the randomness used by all

entities.

Adversarial Model: We consider honest-but-curious adversaries. Honest-but-curious

adversaries follow the protocol instructions correctly, but try to learn additional information.

We only consider static adversaries, for which the set of corrupted parties is chosen before

the start of the protocol execution and does not change. A version of the UC theorem for

the case of honest-but-curious adversaries is given in Theorem 4.20 of Cramer et al. [15].

Setup Assumption: It is a well-known fact that secure two-party computation (and

also secure multi-party computation) can only achieve UC-security using a setup assumption

[9, 10]. Multiple setup assumptions were used previously to achieve UC-security for secure

computation protocols, including: the availability of a common reference string [9, 10, 41], the

availability of a public-key infrastructure [4], the random oracle model [34, 5], the existence

of noisy channels between the parties [22, 26], and the availability of signature cards [35]

or tamper-proof hardware [37, 21, 23]. In this work the commodity-based model [7] is

used as the setup assumption. In this model there exists a trusted initializer that pre-

distributed correlated randomness to Alice and Bob during a setup phase. This setup phase
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Functionality FDTI

FDTI is parametrized by an algorithm D. Upon initialization run (DA,DB)
$← D and deliver

DA to Alice and DB to Bob.

Figure A.1: The Trusted Initializer Functionality.

is run before the protocol execution (and in fact can be performed even before Alice and

Bob get to know their inputs), and the trusted initializer does not participate in any other

point of the protocol. The commodity-based model was used in many previous works, e.g.,

[46, 25, 24, 36, 48, 19, 16, 17, 31, 18]. The trusted initializer is modeled by the ideal

functionality FDTI described in Figure A.1.

Simplifications: The simulation strategy in our proofs is in fact very simple: all the com-

putations are performed using secret sharings and all the protocol messages look uniformly

random from the point of view of the receiver, with the single exception of the openings of

the secret sharings. Nevertheless, the messages that open a secret sharing can be straight-

forwardly simulated using the outputs of the respective functionalities. In the ideal world,

the simulator S has the leverage of being the one responsible for simulating all the ideal

functionalities other than the one whose security is being analyzed (including the trusted

initializer functionality FDTI), and he can easily use this fact to perform a perfect simulation.

For this reason the real and ideal world are indistinguishable for any environment Z and

achieve perfect security.

The messages of the ideal functionalities are formally public delayed outputs, i.e., first

the simulator is asked whether it allows the message to be delivered (this is due to the fact

that in the real world the adversary controls the scheduling of the network), and the message
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is only delivered when S agrees. And formally, every instance has a session identification.

We omit those information from descriptions for the sake of readability.

A.2 Security of the Building Blocks

The protocol for secure distributed matrix multiplication πDMM UC-realizes the distributed

matrix multiplication functionality FDMM described in Figure A.2 [27, 18]. The protocol

for secure comparison πDC UC-realizes the functionality FDC described in Figure A.3 [32,

18]. The protocol for secure bit-decomposition πdecomp UC-realizes the functionality Fdecomp

described in Figure A.4 [18]. The LR classification protocol πLR UC-realizes the functionality

FLR described in Figure A.5 [18].

The correctness of the equality test protocol πEQ follows from the fact that in the case

that x = y, then all ri’s will be equal to 1 and therefore z =
∏

i ri will also be 1. If

x 6= y, then for at least one value i, we have that ri = 0, and therefore z = 0. For the

simulation, S executes an internal copy of A interacting with an instance of πEQ in which

the uncorrupted parties use dummy inputs. Note that all the messages that A receives look

uniformly random to him. Since the share multiplication protocol is substituted by FDMM

using the UC composition theorem, and S is the one responsible for simulating FDMM in the

ideal world, S can leverage this fact in order to extract the share that any corrupted party

have of the value xi + yi, let the extracted value of the corrupted party be denoted by vi,C .

The simulator then pick random values xi,C , yi,C ∈ {0, 1} such that xi,C + yi,C = vi,C mod 2

and submit these values to FEQ as being the shares of the corrupted party for xi and yi (note

that the result of FEQ only depends on the values of xi + yi mod 2). S is also able to fix

the output share of the corrupted party in FEQ so that it matches the one in the instance of

πEQ. This is a perfect simulation strategy, no environment Z can distinguish the ideal and

real worlds and therefore πEQ UC-realizes FEQ.

The correctness of the secure feature extraction protocol πFE follows directly from the

fact that each xij is equal to 1 if, and only if, aj = bi, and therefore xi =
∑

j xij is equal

to 1 if, and only if, bi is equal to some element of A. In the ideal world, the simulator S



41

Functionality FDMM

FDMM is executed with Alice and Bob is parametrized by the size q of the ring and the

dimensions (i, j) and (j, k) of the matrices.

Input: Upon receiving a message from Alice/Bob with her/his shares of JXKq and JY Kq ,

verify if the share of X is in Zi×j
q and the share of Y is in Zj×k

q . If it is not, abort.

Otherwise, record the shares, ignore any subsequent message from that party and inform

the other party about the receipt.

Output: Upon receipt of the inputs from both Alice and Bob, reconstruct X and Y from

the shares, compute Z = XY and create a secret sharing JZKq . Before the deliver of the

output shares, a corrupt party fix its share of the output to any constant value. In both

cases the shares of the uncorrupted parties are then created by picking uniformly random

values subject to the correctness constraint.

Figure A.2: The Distributed Matrix Multiplication Functionality.
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Functionality FDC

FDC is parametrized by the bit-length ` of the values being compared.

Input: Upon receiving a message from Alice/Bob with her/his shares of JxiK2 and JyiK2

for all i ∈ {1, . . . , `}, record the shares, ignore any subsequent messages from that party

and inform the other party about the receipt.

Output: Upon receipt of the inputs from both parties, reconstruct x and y from the

bitwise shares. If x ≥ y, then create and distribute to Alice and Bob the secret sharing

J1K2 ; otherwise the secret sharing J0K2 . Before the deliver of the output shares, a corrupt

party fix its share of the output to any constant value. In both cases the shares of the

uncorrupted parties are then created by picking uniformly random values subject to the

correctness constraint.

Figure A.3: The Distributed Comparison Functionality.
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Functionality Fdecomp

Fdecomp is parametrized by the bit-length ` of the value x being converted from an additive

secret sharing JxKq in Zq to additive bitwise secret sharings JxiK2 in Z2 such that x =

x` · · · x1.

Input: Upon receiving a message from Alice or Bob with her/his share of JxKq , record

the share, ignore any subsequent messages from that party and inform the other party

about the receipt.

Output: Upon receipt of both shares, reconstruct x, compute its bitwise representation

x` · · · x1, and for i ∈ {1, . . . , `} distribute new secret sharings JxiK2 of the bit xi. Before the

output deliver, the corrupt party fix its shares of the outputs to any constant values. The

shares of the uncorrupted parties are then created by picking uniformly random values

subject to the correctness constraints.

Figure A.4: The Bit-Decomposition Functionality.
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Functionality FLR

FLR computes the classification according to a logistic regression model with the threshold

value set to 0.5. The input feature vector x is secret shared between Alice and Bob.

Input: Upon receiving the weight vector w, the intercept value b and his shares JxiKq of

the elements of x from Bob, or her shares JxiKq of the elements of x from Alice, store the

information, ignore any subsequent message from that party, and inform the other party

about the receipt.

Output: Upon getting the inputs from both parties, reconstruct the feature vector x,

compute the value sign (〈x,w〉+ b) and output it to Bob as the class prediction.

Figure A.5: The Logistic Regression Classification Functionality.
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runs internally a copy of A and an execution of πFE with dummy inputs for the uncorrupted

parties. All the messages from the uncorrupted parties look uniformly random fromA’s point

of view, and therefore the simulation is perfect. S uses the leverage of being responsible for

simulating FEQ (πEQ is substituted by FEQ using the UC composition theorem) in order to

extract the inputs of any corrupted party and forward it to FFE. No environment Z can

distinguish the ideal world from the real one, and thus πFE UC-realizes FFE.

In the case of the conversion protocol π2toQ the correctness of the protocol execution

follows straightforwardly: since x = xa + xB mod 2, then z = xA + xB − 2xAxB is such

that z = x for all possible values xA,xB ∈ {0, 1}. As for the security, the simulator S runs

internally a copy of the adversary A and simulates to him an execution of the protocol π2toQ

using dummy inputs for the uncorrupted parties. As all the messages from the uncorrupted

parties look uniformly random from the adversary point of view, and so the simulation is

perfect. The simulator can use the fact that it is the one simulating the multiplication

functionality FDMM (the secret sharing multiplication is substituted by FDMM using the UC

composition theorem) in order to extract the share of any corrupted party and fix the input

to/output from F2toQ appropriately, so that no environment Z can distinguish the real and

ideal worlds. Hence π2toQ UC-realizes F2toQ.

The AdaBoost classification protocol πAB is trivially correct for the case of binary features

and output class, and decision stumps. In the simulation, S runs an internal copy of A

interacting with a simulated instance of πAB that uses dummy inputs for the uncorrupted

parties. πIP is substituted by FDMM using the UC composition theorem. S uses the leverage of

simulating FDMM in order to extract the shares of the feature vector belonging to a corrupted

party, as well as the weighted probability vectors y and z if Bob is corrupted. S can then

give these extracted inputs to FAB. No environment can distinguish the real and ideal worlds

since the simulation is perfect, and thus πAB UC-realizes FAB.
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Functionality FEQ

FEQ is parametrized by the bit-length ` of the values being compared.

Input: Upon receiving a message from Alice/Bob with her/his shares of JxiK2 and JyiK2

for all i ∈ {1, . . . , `}, record the shares, ignore any subsequent messages from that party

and inform the other party about the receipt.

Output: Upon receipt of the inputs from both parties, reconstruct x and y from the

bitwise shares. If x = y, then create and distribute to Alice and Bob the secret sharing

J1K2 ; otherwise the secret sharing J0K2 . Before the deliver of the output shares, a corrupt

party fix its share of the output to any constant value. In both cases the shares of the

uncorrupted parties are then created by picking uniformly random values subject to the

correctness constraint.

Figure A.6: The Equality Test Functionality.
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Functionality FFE

FFE is parametrized by the sizes m of Alice’s set and n of Bob’s set, and the bit-length `

of the elements.

Input: Upon receiving a message from Alice with her set A = {a1, a2, . . . , am} or from

Bob with his set B = {b1, b2, . . . , bn}, record the set, ignore any subsequent messages from

that party and inform the other party about the receipt.

Output: Upon receipt of the inputs from both parties, define the binary feature vector

x of length n by setting each element xi to 1 if bi ∈ A, and to 0 otherwise. Then create

and distribute to Alice and Bob the secret sharings JxiK2 . Before the deliver of the output

shares, a corrupt party fix its share of the output to any constant value. In both cases the

shares of the uncorrupted parties are then created by picking uniformly random values

subject to the correctness constraint.

Figure A.7: The Secure Feature Extraction Functionality.
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Functionality F2toQ

F2toQ is parametrized by the size of the field q.

Input: Upon receiving a message from Alice/Bob with her/his share of JxK2 , record the

share, ignore any subsequent messages from that party and inform the other party about

the receipt.

Output: Upon receipt of the inputs from both parties, reconstruct x, then create and

distribute to Alice and Bob the secret sharing JxKq . Before the deliver of the output

shares, a corrupt party fix its share of the output to any constant value. In both cases the

shares of the uncorrupted parties are then created by picking uniformly random values

subject to the correctness constraint.

Figure A.8: The Secret Sharing Conversion Functionality.
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Functionality FAB

FAB computes the classification according to AdaBoost with multiple decision stumps.

All the features are binary and the output class is also binary. The input feature vector

x is secret shared between Alice and Bob. The model specified by Bob can be expressed

in a simplified way by two weighted probability vectors y = (y1,0, y1,1, . . . , yn,0, yn,1) and

z = (z1,0, z1,1, . . . , zn,0, zn,1). For the i-th decision stump: yi,k is the weighted probability

(i.e., a probability multiplied by the weight of the i-th decision stump) that the model

assigns to the output class being 0 if xi = k, and zi,k is defined similarly for the output

class 1.

Input: Upon receiving the vectors y and z and his shares JxiKq of the elements of the

feature vector x from Bob, or her shares JxiKq of the elements of x from Alice, store the

information, ignore any subsequent message from that party, and inform the other party

about the receipt.

Output: Upon getting the inputs from both parties, reconstruct the feature vector x and

let w = (1−x1,x1, 1−x2,x2, . . . , 1−xn,xn). If 〈w, z〉 ≥ 〈w, y〉, output the class prediction

1 to Bob; otherwise output 0.

Figure A.9: The AdaBoost Classification Functionality.
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A.3 Security of the Privacy-Preserving Text Classification Solutions

The protocol πTC−LR simply executes sequentially the protocols πFE, π2toQ and πLR. Given

that these protocols UC-realize FFE, F2toQ and FLR, respectively, they can be substituted by

the functionalities using the UC composition theorem. Note that the sequential composition

of those functionalities trivially perform the same computation as FTC−LR, and no information

other than the output of the classification is revealed (all the intermediate values are kept as

secret sharings). In the ideal world S simulates an internal copy of the adversary A running

πTC−LR and using dummy inputs for the uncorrupted parties. The simulator S can easily

extract all the information (from the corrupted parties) that it needs to provide to FTC−LR

by using the leverage of being responsible for simulating FFE, F2toQ and FLR in the ideal

world. Therefore no environment Z can distinguish the real world from the ideal world, and

πTC−LR UC-realizes FTC−LR.

Similarly, the protocol πTC−AB just runs sequentially the protocols πFE, π2toQ and πAB,

that can be substituted by FFE, F2toQ and FAB using the UC composition theorem. The

result of the computation is trivially the same as in FTC−AB, and no additional information

is revealed. S runs internally a copy of A interacting with a simulated instance of πTC−AB

(using dummy inputs for the uncorrupted parties) and can easily extract from the corrupted

parties all the information that it must provide to FTC−AB by using the leverage of being

responsible for simulating FFE, F2toQ and FAB in the ideal world. No environment Z can

distinguish the real and ideal worlds, and therefore πTC−AB UC-realizes FTC−AB.
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Functionality FTC−LR

FTC−LR computes the privacy-preserving text classification according to a logistic regres-

sion model with the threshold value set to 0.5. It is parametrized by the sizes m of Alice’s

set and n of Bob’s set, and the bit-length ` of the elements.

Input: Upon receiving a message from Alice with her set A = {a1, a2, . . . , am} or from

Bob with his set B = {b1, b2, . . . , bn}, the weight vector w and the intercept value b, record

the values, ignore any subsequent messages from that party and inform the other party

about the receipt.

Output: Upon getting the inputs from both parties, define the feature vector x of length

n as follows: xi = 1 if bi ∈ A; and xi = 0 otherwise. Compute the value sign (〈x,w〉+ b)

and output it to Bob as the class prediction.

Figure A.10: The Functionality for Privacy-Preserving Text Classification with Logistic Re-
gression.
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Functionality FTC−AB

FTC−AB computes the privacy-preserving text classification according to AdaBoost with

multiple decision stumps. It is parametrized by the sizes m of Alice’s set and n of Bob’s

set, and the bit-length ` of the elements. All the features are binary and the output class

is also binary. The model specified by Bob can be expressed in a simplified way by two

weighted probability vectors y = (y1,0, y1,1, . . . , yn,0, yn,1) and z = (z1,0, z1,1, . . . , zn,0, zn,1).

For the i-th decision stump: yi,k is the weighted probability (i.e., a probability multiplied

by the weight of the i-th decision stump) that the model assigns to the output class being

0 if the feature xi = k, and zi,k is defined similarly for the output class 1.

Input: Upon receiving a message from Alice with her set A = {a1, a2, . . . , am} or from

Bob with his set B = {b1, b2, . . . , bn}, y and z, record the values, ignore any subsequent

messages from that party and inform the other party about the receipt.

Output: Upon getting the inputs from both parties, define the feature vector x of length

n as follows: xi = 1 if bi ∈ A; and xi = 0 otherwise. Let w = (1−x1,x1, 1−x2,x2, . . . , 1−

xn,xn). If 〈w, z〉 ≥ 〈w, y〉, output the class prediction 1 to Bob; otherwise output 0.

Figure A.11: The Functionality for Privacy-Preserving Text Classification with Adaboost.


