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Abstract 

Implementation and Analysis of the NTRU Algorithm in Java 

Tatiana Linardopoulou 

 

 

 

 

This research thesis describes in detail a Java implementation of the latest version of the NTRU 

algorithm, which is an important candidate for post-quantum cryptography standardization. 

Multiple supporting functions and classes were built for the Java implementation, including 

methods for integer addition, integer multiplication, polynomial addition, polynomial 

multiplication, and modular reduction. This background work allowed for the Java 

implementation of the entire NTRU algorithm. Detailed explanations for which algorithms are 

best-suited for the implementation of arithmetic operations are provided. Additionally, this 

thesis clarifies which algorithms are the most robust for a cryptographically secure 

implementation of the NTRU algorithm. Finally, there is a discussion on the caveats and 

potential security issues, specific to a Java implementation of NTRU. These contributions will be 

useful in practice and beneficial to future implementations of the NTRU algorithm.   
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Introduction 
 

An important issue in modern cryptography is the ability of current cryptosystems to withstand 

attacks by quantum computers. Various cryptographic algorithms have been proposed to 

defend against such attacks. Currently, the National Institute of Standards and Technology 

(NIST) is going through a post-quantum cryptography standardization process, in which NTRU is 

one of the candidates for selection [1]. NTRU is an excellent candidate for standardization as it 

is efficient, compact, and has a long history of cryptanalysis [1]. Additionally, versions of NTRU 

have already been standardized by other organizations [1].  

The version of NTRU that is the focus of this paper is the NTRU algorithm proposed in 

the second round of the NIST standardization process [2]. The proposed algorithm is 

deceptively simple and short, fitting in only two presentation slides [3]. However, it is quite 

challenging to implement. In Java, as well as implementations in other languages, there are 

many supporting functions and classes which need to be built before one can actually create 

the methods described by the authors of the algorithm [2]. In fact, they explicitly point out the 

lack of these methods: “Algorithms for integer addition, integer multiplication, polynomial 

addition, polynomial multiplication, modular reduction (Rq, S2, S3, Sq), and canonical 

representatives (Rq, S3, Sq) are omitted [2]”.  

These background algorithms, however, are not only essential to the functionality of the 

implementation of this version of NTRU, but are also notoriously challenging to implement 

because of the amount of bit-manipulation involved. This project consists of a Java 

implementation of the entire NTRU algorithm, including these previously omitted sections, 

which will be described in a straight-forward manner and will hopefully make future 

implementations easier.  
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Contributions 
 

This work provides several contributions to the field of cryptography, in general, and to the 

implementation of the NTRU algorithm, in particular. Firstly, detailed explanations for which 

algorithms are best-suited for the implementation of arithmetic operations are provided. 

Secondly, this paper clarifies which algorithms are the most robust for a cryptographically 

secure implementation of the NTRU algorithm. Finally, there is a discussion on the caveats and 

potential security issues, specific to a Java implementation of the NTRU algorithm. These 

contributions will be useful in practice and beneficial to future implementations of the NTRU 

algorithm.  

The remainder of this paper is structured as follows: a background of the NTRU 

algorithm, a discussion on secure and efficient background algorithms, definitions and 

parameters, a description of the Java implementation, results and conclusions, 

acknowledgements, references, and an Appendix with code examples from the 

implementation. 
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Background 

 

NTRU Evolution 

 

The NTRU algorithm was originally proposed by J. Hoffstein, J. Pipher, J.H. Silverman [4] in an 

informal rump session of the Crypto ’96 conference [5]. It was, and remains, a lattice-based 

alternative to the Rivest-Shamir-Adleman (RSA) algorithm [6] and to Elliptic Curve Cryptography 

(ECC) [7]. NTRU is based on the shortest vector problem in a lattice—a problem that 

theoretically is not breakable by quantum computers [8]. Early versions of the algorithm were 

problematic, largely in that, much like early versions of the RSA cryptosystem, the chosen 

parameters were too small [9]. NTRU has gone through many evolutions, though mainly in 

regards to parameters—the structure of the algorithm itself has remained largely unchanged 

[1]. The proposed NTRU algorithm that serves as the basis for this implementation is a merger 

of two different algorithms that appeared in the first round of the NIST post-quantum 

standardization process [10]. These algorithms were the NTRUEncrypt (which included NTRU-

HPS) [10] and the NTRU-HRSS-KEM [10]. In this implementation, the focus is specifically on 

NTRU-HPS, as it was previously shown to be both more efficient and more secure than NTRU-

HRSS [2].  

 

 

 

 

 

 

 

 

 

 

 



8 
 

NTRU Synopsis 

 

A synopsis of the version of the NTRU algorithm [3] that serves as the basis for our 

implementation, as well as its requirements, are shown in Figure 1: 

 

Please note: symbol definitions can be located in the Definitions subsection of this thesis. 

 

 

Figure 1: NTRU Algorithm, as presented within the NIST Round 2 Presentation [3] 

 

A synopsis of the decryption algorithm for this version of NTRU [3] is shown in Figure 2: 

 

 

Figure 2: Decryption Algorithm for NTRU, as presented within the NIST Round 2 Presentation [3] 
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Algorithms 
 

The implementation of cryptographic algorithms must be done with extra care because careless 

implementation can lead to leakage of private information (i.e., information about private 

keys). This is particularly problematic in conditional statements whose results depend on secret 

information. These types of statements can lead to a specific type of side-channel attack [11] 

called a timing attack. This is a type of attack which involves analyzing how long the execution 

of an algorithm takes and depends on the fact that the time of a conditional statement can vary 

based on different input [12]. The attacker can use this timing information to work backwards 

and discover the private input, such as a private key. Moreover, this type of attack is 

computationally inexpensive and only requires knowledge of the ciphertext [12].  

As a very simple example of such an attack, with the inclusion of conditional statements, 

consider a theoretical method that checks an administrator password [13] (Example adapted 

for Java by the author of this thesis): 

 

 

Figure 3: Java code example of conditional statements that allow for timing attacks 

 

In this example, each character of an input password is checked against the character of the 

stored password and, if any character in the input password is incorrect, returns false. Note 

that if the first character in the input password is incorrect, this method will return false 

immediately. An attacker can record this increment of response time. However, if they then try 

a different input password and the first character is correct, the method will take a longer 

amount of time to execute because it will go on to the next iteration of the loop. The attacker 

can then record that increment of response time as well. Thus, much like a safecracker listening 



10 
 

for the click of the correct code combination, character by character, the attacker can discover 

the entire secret password. 

Any programming algorithm that includes conditional statements can be vulnerable to 

timing attacks. For example, the Extended Euclidian Algorithm is efficient in achieving inversion, 

so it may seem like a good algorithm choice for the inversion required in our Java 

implementation of NTRU. However, this algorithm is exquisitely difficult to implement without 

the use of conditional statements and the subsequent leaking of private information [14]. For 

this reason, this implementation uses alternative, more secure algorithms to achieve inversion.  

 

Inversion 

 

The Itoh-Tsujii inversion algorithm [15] is used for binary polynomial inversion. This algorithm 

requires a fixed number of squaring and multiplication operations, which result in the same 

number of steps, regardless of input parameters. In C implementations, this algorithm also 

benefits from the existence of machine-level instructions, making it a secure and efficient 

choice for binary polynomial inversion [15].  

However, for ternary polynomial inversion, the Itoh-Tsujii algorithm does not appear to 

provide an advantage, as there are no machine-level instructions for ternary operations. 

Moreover, there is no reason to believe that such instructions will be available in the future. 

Instead, the Almost Inverse Algorithm [16] can be implemented in a way that does not leak 

information. The authors of the NTRU algorithm claim that the Bernstein-Yang inversion 

method is more efficient [2], however the evidence provided does not seem to support this 

claim [2].  Additionally, the Bernstein-Yang algorithm requires floating-point arithmetic [17], 

which can lead to decryption issues due to rounding errors. To improve on this algorithm, we 

created a workaround using a combination of bit-shifting and integer arithmetic. This involved 

implementing ternary arithmetic in which we use Boolean expressions, thus mimicking 

hardware operations, and resulting in a constant time implementation.  
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For q-ary polynomial inversion, we implemented Hensel’s lifting algorithm, as per the 

NTRU algorithm specification [2]. This algorithm is constant time, does not leak any information 

about private keys, and is efficient [2].  

 

Multiplication 

 

The plain multiplication algorithm for polynomials could be used [18], and would be secure. 

However, for large dimensions of hundreds of coefficients, such as those in the parameters 

required for NTRU [2], this algorithm is highly inefficient. Subsequently, the Karatsuba and 

ternary Karatsuba algorithms were implemented for both binary and ternary polynomial 

multiplication [18]. They were chosen due to their efficiency and direct application to 

polynomials. Ternary Karatsuba, specifically, was implemented because in Python and C 

implementations and tests of the NTRU Algorithm, performed by Dr. Paulo S. L. M. Barreto, this 

algorithm was shown to significantly improve execution time. 

An alternative one might consider for polynomial multiplication is the Fast-Fourier 

Transform (FFT), but the dimensions would have to be doubled to be large enough to hold two 

polynomials, and even tripled in the case of larger inputs. Additionally, operations involve 

modulo a prime number, instead of modulo two, so the FFT quickly becomes an expensive 

algorithm. It is unclear that there would be any gain from using the FFT. In practice, for 

parameters the size of those used for NTRU, it seems highly unlikely that the FFT would be 

more efficient than the Karatsuba-based algorithms.   

 

 

 

 

 

 

 

 



12 
 

Definitions and Parameters 
 

The selected definitions, derived constants, and recommended parameters used in this Java 

implementation were originally described in the NTRU Algorithm Specifications and Supporting 

Documentation [2] that was submitted in the second round of the NIST standardization 

process. They are listed in the subsections that follow. 

 

Definitions 

All definitions are with respect to a fixed odd prime n [2]. 

1.  (ℤ/𝑛)𝑥  is the multiplicative group of integers modulo 𝑛. 

2.  Φ1 is the polynomial (𝑥 −  1). 

3.  Φ𝑛 is the polynomial (𝑥𝑛 − 1) = (𝑥 − 1) = 𝑥𝑛 −1 + 𝑥𝑛 −2+. . . +1. 

4.  R is the quotient ring ℤ[𝑥]/( Φ1 Φ𝑛 ). 

5.  S is the quotient ring ℤ[𝑥]/( Φ𝑛 ). 

6.  R/3 is the quotient ring ℤ[𝑥]/(3, Φ1 Φ𝑛 ). 

7.  R/q is the quotient ring ℤ[𝑥]/(𝑞, Φ1 Φ𝑛 ). The canonical R/q-representative of 𝑎 ∈ ℤ[𝑥] is    

     the unique polynomial 𝑏 ∈ ℤ[𝑥] of degree at most 𝑛 − 1 with coefficients in  

     {−𝑞/2, −𝑞/2 + 1, . . . , 𝑞/2 − 1} such that 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 (𝑞, Φ1 Φ𝑛 )). 

8.  S/2 is the quotient ring ℤ[𝑥]/(2, Φ𝑛 ). The canonical S/2-representative of 𝑎 ∈ ℤ[𝑥] is the 

     unique polynomial 𝑏 ∈ ℤ[𝑥] of degree at most 𝑛 − 2 with coefficients in {0, 1} such that 

     𝑎 ≡ 𝑏 (𝑚𝑜𝑑 (2, Φ𝑛 )). 

9.  S/3 is the quotient ring ℤ[𝑥]/(3, Φ𝑛 ). The canonical S/3-representative of 𝑎 ∈ ℤ[𝑥] is the      

     Unique polynomial 𝑏 ∈ ℤ[𝑥] of degree at most 𝑛 − 2 with coefficients in {−1, 0, 1} such that 

     𝑎 ≡ 𝑏 (𝑚𝑜𝑑 (3, Φ𝑛 )). 

10. S/q is the quotient ring ℤ[𝑥]/(𝑞, Φ𝑛 ). The canonical S=q-representative of 𝑎 ∈ ℤ[𝑥] is the  

       unique polynomial 𝑏 ∈ ℤ[𝑥] of degree at most 𝑛 − 2 with coefficients in  

       {−𝑞/2, −𝑞/2 + 1, . . . , 𝑞/2 − 1} such that 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 (𝑞, Φ𝑛 )). 

11. A polynomial is ternary if its coefficients are in {−1, 0, 1}. 
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12. A ternary polynomial 𝑣 =  ∑ 𝜐𝑖𝑥
𝑖

𝑖  has the non-negative correlation property if   

       ∑ 𝜐𝑖𝜐𝑖+1 ≥ 0.𝑖   

13. Ƭ is the set of non-zero ternary polynomials of degree at most 𝑛 − 2. Equivalently, Ƭ is the  

       set of canonical S/3-representatives. 

14. Ƭ+ is the subset of Ƭ consisting of polynomials with the non-negative correlation property. 

15. Ƭ(d), for an even positive integer 𝑑, is the subset of Ƭ consisting of polynomials that have  

       Exactly 𝑑/2 coefficients equal to +1 and 𝑑/2 coefficients equal to −1. 

16. ⊥ is the logical ‘false’. 

 

Derived Constants 

logq 

Formula: log2(q) 

 

sample_iid_bits 

Formula: 8 ∗  (𝑛 − 1) 

 

sample_fixed_type_bits 

Formula: 30 ∗  (𝑛 − 1) 

 

sample_key_bits 

Formula: sample_iid_bits + sample_fixed_type_bits 

 

sample_plaintext_bits 

Formula: sample_iid_bits + sample_fixed_type_bits 

 

packed_sq_bytes 

Formula: ⌈(𝑛 − 1)  ∗  𝑙𝑜𝑔𝑞/8⌉ 
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packed_rq0_bytes 

Formula: ⌈(𝑛 − 1)  ∗  𝑙𝑜𝑔𝑞/8⌉ 

 

dpke_public_key_bytes 

Formula: packed_rq0_bytes 

 

dpke_private_key_bytes 

Formula: 2 * packed_s3_bytes + packed_sq_bytes 

 

dpke_plaintext_bytes 

Formula: 2 * packed_s3_bytes 

 

dpke_ciphertext_bytes 

Formula: packed_rq0_bytes 

 

Recommended Parameters 

 ntruhps2048509 ntruhps2048677 ntruhps4096821 

n 509 677 821 

q 2048 2048 4096 

Sample_fixed_type_bits 15240 20280 24630 

sample_iid_bits 4064 5408 6560 

sample_key_bits 19304 25688 31190 

sample_plaintext_bits 19304 25688 31190 

packed_rq0_bytes 699 930 1230 

packed_sq_bytes 699 930 1230 

dpke_public_key_bytes 699 930 1230 

dpke_private_key_bytes 903 1202 1558 

dpke_plaintext_bytes 204 272 328 

dpke_ciphertext_bytes 699 930 1230 
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Implementation 

 

Implementing the RS2 Class 

 

Most of the methods described below have been implemented as static to avoid creating 

objects that may contain sensitive information [19]. The user is advised to pass arrays 

representing ring elements as parameters. In Java, unlike in C, which allows the use of pointers, 

an index offset must be used on the arrays to specify where data should be written. In order to 

make the implementation efficient, bit shifting was used to simulate multiplication.  

 

Acceptable: 

This Boolean method is used to check that ring degree ‘n’, represented as an integer, is an 

acceptable ring degree to define R/2 and S/2. It returns true if n is acceptable and false 

otherwise. A ring degree is acceptable if n is a prime such that 2 is primitive mod n.  

 

RS2_nbits: 

This method is necessary to compute the actual number of bits needed to represent u. The 

input parameter is a natural number u, represented as a long array, integer ‘c’ representing the 

word count of ‘u’, and the method returns the integer number of bits needed to represent u.  

 

Display: 

This method returns a String representation of the input binary polynomial u. The input is a 

binary polynomial, represented as long array ‘u’. For simplicity on coding, this implementation 

calls the toString() method, from the Java Arrays library, on u.  

 

Inv: 

This method computes 𝑢−1 in the finite field (𝑍/2)[𝑥]/( Φ𝑛 (𝑥)) for 0 <= degree of u < n. This 

is the Itoh-Tsujii inversion algorithm. The input parameters are ‘n’, a prime with 
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(𝑥𝑛 − 1)/(𝑥 −  1), which is irreducible in (𝑍/2)[𝑥], output array ‘w’, and long array ‘u’, a non-

zero element from (𝑍/2)[𝑥]/( Φ𝑛 (𝑥)). 

 

Clsqr: 

This method computes carryless u2 for a 64-bit (1-word) polynomial u, represented as a long. 

The input parameters are w_o, an integer representing the index offset in output array ‘w’ 

where u2 is to be written, and u, the long representation of the 1-word ring element to be 

squared.  

 

Clmul: 

This method computes the caryless multiplication of two binary, 64-bit, polynomials u and v, 

represented as longs. The input parameters include output array ‘w’, w_o, an integer 

representing the index offset in output array ‘w’ where u*v is to be written, as well as u and v, 

the long representations of the 1-word ring elements to be multiplied.  

 

Kar: 

This method computes u*v in (Z/2)[x] with the help of Karatsuba’s algorithm for multiplication, 

using 2-way block sizes. Input parameters include integer ‘k’, which represents lg(m) where m is 

the 2-way Karatsuba block size, output array ‘w’, and w_o, an integer representing the index 

offset in output array ‘w’ where u*v is to be written. Additional inputs include u and v, the long 

array representations of the binary polynomials to be multiplied, as well as offsets u_o and v_o.  

 

Kar3: 

This method computes u*v in (Z/2)[x] by applying an initial 3-way Karatsuba layer, followed by 

recursive 2-way Karatsuba layers. Input parameters include integer ‘t’, which represents lg(m) 

where m is the 3-way Karatsuba block size, output array ‘w’, and w_o, an integer representing 

the index offset in output array ‘w’ where u*v is to be written. Additional inputs include u and 

v, the long array representations of the binary polynomials to be multiplied, as well as offsets 

u_o and v_o.  
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Redc: 

This method is used to reduce rings mod 𝑥𝑛 − 1 or mod Φ𝑛 (𝑥). Input parameters include ‘n’, 

the ring degree, long array ‘u’ representing the ring element to reduce (with degree of u < 2*n), 

and integer red, which indicates the modular reduction option (where an input of 0 means no 

reduction, 1 means reduce 𝑥𝑛 − 1, 2 means reduce mod Φ𝑛 (𝑥), and 3 means reduce mod 

both). The method returns the number of words left on ‘u’, or, if no reduction is performed, 

returns -1. 

 

Mul: 

This method computes u*v in (Z/2)[x] using Karatsuba multiplication. An initial 3-way Karatsuba 

layer is automatically applied when n is closer to 2⌊𝑙𝑔(𝑛)⌋ than  2⌈𝑙𝑔(𝑛)⌉. Input parameters include 

‘n’, representing the ring degree, output array ‘w’, u and v, the long array representations of 

the binary polynomials to be multiplied (and later reduced using the redc method). The final 

parameter is integer red, which indicates the modular reduction option (where an input of 0 

means no reduction, 1 means reduce 𝑥𝑛 − 1, 2 means reduce mod Φ𝑛 (𝑥), and 3 means reduce 

mod both).  

 

Sqr: 

This method computes 𝑢(2𝑘) in (𝑍/2)[𝑥]/( 𝑥𝑛 − 1). Input parameters include ‘n’, representing 

the ring degree, long array ‘u’, an element from (𝑍/2)[𝑥]/( 𝑥𝑛 − 1), and integer ‘k’ 

representing the number of times to square ‘u’.  
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Implementing the RS3 Class 

 

Only the most consequential methods have been included in this description. Most of the 

methods described below have been implemented as static to avoid creating objects that may 

contain sensitive information [19]. The user is advised to pass arrays representing ring elements 

as parameters. In Java, unlike in C, which allows the use of pointers, an index offset must be 

used on the arrays to specify where data should be written. Additionally, helper methods to 

convert Booleans to longs, as well as integers to Booleans, were needed since casting of those 

types is not allowed in Java. Addition, subtraction, and negation methods have been omitted 

from this description, but the methods have been included in the implementation and perform 

those operations in GF(3). 

 

Acceptable: 

This Boolean method is used to check that ring degree ‘n’, represented as an integer, is an 

acceptable ring degree to define R/3 and S/3. It returns true if n is acceptable and false 

otherwise. A ring degree is acceptable if n is a prime such that 3 is primitive mod n and 

⌈(𝑛 +  3)/64⌉ is equal to ⌈𝑛/64⌉.  

 

RS3_ntrits: 

This method is necessary to compute the actual number of trits needed to represent u. The 

input parameter is array ‘u’, integer ‘c’ representing the word count of u[0] and/or u[1], and the 

method returns the integer number of bits needed to represent u. 

 

RS3_checksum: 

This method computes u mod(q, x -1). Input parameters include integer ‘lgq’, representing 

lg(q), ring degree ‘n, and ‘u’, and element of (𝑍/3)[𝑥]/( 𝑥𝑛 − 1). 
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RS3_inv: 

This method computes 𝑢−1 in the finite field (𝑍/3)[𝑥]/( Φ𝑛 (𝑥)) for 0 <= degree of u < n. This 

algorithm combines parts of Schroeppel et. al.’s Almost Inverse algorithm with a modification of 

the Bernstein and Yang method. The input parameters are ‘n’, a prime with (𝑥𝑛 − 1)/(𝑥 −  1), 

which is irreducible in (𝑍/2)[𝑥], output array ‘v’, and ‘u’, a non-zero element from 

(𝑍/3)[𝑥]/( Φ𝑛 (𝑥)). 

 

_redc: 

This method is used to reduce rings mod 𝑥𝑛 − 1 or mod Φ𝑛 (𝑥). Input parameters include ‘n’, 

the ring degree, int ‘m’ representing the upper bound for the degree of ‘u’, array ‘u’ 

representing the ring element to reduce, and integer red, which indicates the modular 

reduction option (where an input of 0 means no reduction, 1 means reduce 𝑥𝑛 − 1, 2 means 

reduce mod Φ𝑛 (𝑥), and 3 means reduce mod both).  

 

S3: 

This method reduces all coefficients of ‘u’ mod 3 to create an element of (𝑍/3)[𝑥], 

 (𝑍/3)[𝑥]/( 𝑥𝑛 − 1), or (𝑍/3)[𝑥]/( Φ𝑛 (𝑥)). Input parameters include ‘n’, the ring degree, 

output array ‘w’, a list of integers called ‘u’, and integer red, which indicates the modular 

reduction option (where an input of 0 means no reduction, 1 means reduce 𝑥𝑛 − 1, 2 means 

reduce mod Φ𝑛 (𝑥), and 3 means reduce mod both). 

 

_kar: 

This method computes u*v in (𝑍/3)[𝑥], with the help of Karatsuba’s algorithm for 

multiplication, using 2-way block sizes. Input parameters include integer ‘k’, which represents 

lg(m) where m is the 2-way Karatsuba block size, output array ‘w’, and w_o, an integer 

representing the index offset in output array ‘w’ where u*v is to be written. Additional inputs 

include u and v, the array representations of the ternary polynomials to be multiplied, as well 

as offsets u_o and v_o.  
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_kar3: 

This method computes u*v in (𝑍/3)[𝑥] by applying an initial 3-way Karatsuba layer, followed 

by recursive 2-way Karatsuba layers. Input parameters include integer ‘t’, which represents 

lg(m) where m is the 3-way Karatsuba block size, output array ‘w’, and w_o, an integer 

representing the index offset in output array ‘w’ where u*v is to be written. Additional inputs 

include u and v, the array representations of the ternary polynomials to be multiplied, as well 

as offsets u_o and v_o.  

 

RS3_mul: 

This method computes u*v in (𝑍/3)[𝑥] using Karatsuba multiplication. An initial 3-way 

Karatsuba layer is automatically applied when n is closer to 2⌊𝑙𝑔(𝑛)⌋ than  2⌈𝑙𝑔(𝑛)⌉. Input 

parameters include ‘n’, representing the ring degree, output array ‘w’, u and v, the array 

representations of the ternary polynomials to be multiplied (and later reduced using the _redc 

method). The final parameter is integer red, which indicates the modular reduction option 

(where an input of 0 means no reduction, 1 means reduce 𝑥𝑛 − 1, 2 means reduce mod Φ𝑛 (𝑥), 

and 3 means reduce mod both).  
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Implementing the RSq Class 

 

Only the most consequential methods have been included in this description. Most of the 

methods described below have been implemented as static to avoid creating objects that may 

contain sensitive information [19]. The user is advised to pass arrays representing ring elements 

as parameters. In Java, unlike in C, which allows the use of pointers, an index offset must be 

used on the arrays to specify where data should be written.  

 

RSq_acceptable: 

This Boolean method is used to check that ring degree ‘n’, represented as an integer, is an 

acceptable ring degree to define R/q and S/q. It returns true if n is acceptable and false 

otherwise. A ring degree is acceptable if n is a prime, where 𝑛 <  211, and such that 2 and 3 are 

primitive mod n and ⌈(𝑛 +  3)/64⌉ is equal to ⌈𝑛/64⌉.  

 

RSq_checksum: 

This method computes u mod(q, x -1). Input parameters include integer lgq, representing lg(q), 

ring degree ‘n, and ‘u’, and element of (𝑍/𝑞)[𝑥]/( 𝑥𝑛 − 1). 

 

Sq: 

This method maps ‘u’ from (𝑍/3)[𝑥]/( 𝑥𝑛 − 1) to (𝑍/𝑞)[𝑥]/( 𝑥𝑛 − 1). Input parameters 

include ring degree ‘n, output short array ‘v’, and ‘u’, and element of (𝑍/3)[𝑥]/( 𝑥𝑛 − 1). 

 

_kar: 

This method computes u*v in (𝑍/𝑞)[𝑥], with the help of Karatsuba’s algorithm for 

multiplication, using 2-way block sizes. Input parameters include integer ‘k’, which represents 

lg(f) where f is the full 2-way Karatsuba block size, output array ‘w’, and w_o, an integer 

representing the index offset in output array ‘w’ where u*v is to be written. Additional inputs 

include u and v, the array representations of the q-ary polynomials to be multiplied, as well as 

offsets u_o and v_o.  
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_kar3: 

This method computes u*v in (𝑍/𝑞)[𝑥] by applying an initial 3-way Karatsuba layer, followed 

by recursive 2-way Karatsuba layers. Input parameters include integer ‘t’, which represents 

lg(m) where m is the 3-way Karatsuba block size, output array ‘w’, and w_o, an integer 

representing the index offset in output array ‘w’ where u*v is to be written. Additional inputs 

include u and v, the array representations of the q-ary polynomials to be multiplied, as well as 

offsets u_o and v_o.  

 

_mod2: 

This method reduces ‘v’ from (𝑍/𝑞)[𝑥]/( Φ𝑛 (𝑥)), where q is a power of 2, to (𝑍/2)[𝑥]/

( Φ𝑛 (𝑥)). Input parameters include ring degree ‘n, array ‘v’, the ring element to reduce, and 

output array ‘u’. 

 

RSq_mul: 

This method computes u*v in (𝑍/𝑞)[𝑥] using Karatsuba multiplication. An initial 3-way 

Karatsuba layer is automatically applied when n is closer to 2⌊𝑙𝑔(𝑛)⌋ than  2⌈𝑙𝑔(𝑛)⌉. Input 

parameters include integer ‘lgq’, representing lg(q), ‘n’, representing the ring degree, output 

array ‘w’, u and v, the array representations of the q-ary polynomials to be multiplied (and later 

reduced). An additional parameter is integer red, which indicates the modular reduction option 

(where an input of 0 means no reduction, 1 means reduce 𝑥𝑛 − 1, 2 means reduce mod Φ𝑛 (𝑥), 

and 3 means reduce mod both). The final input parameter is Boolean ‘cen’, which specifies 

whether the coefficients of the product should be centered around zero. 

 

RSq_inv: 

This method computes 𝑢−1 in the finite field (𝑍/𝑞)[𝑥]/( Φ𝑛 (𝑥)) using the Hensel Lift. The 

input parameters are integer ‘lgq’, representing lg(q), integer ‘n’, representing the ring degree, 

output array ‘s’, and ‘u’, the ring element to invert, and Boolean ‘cen’, which specifies whether 

the coefficients of the product should be centered around zero. 
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RSq_pack: 

This method packs u in canonical form, either from 𝑅/𝑞 =  (𝑍/𝑞)[𝑥]/( 𝑥𝑛 − 1), satisfying 𝑢 =

 0(𝑚𝑜𝑑 𝑞, 𝑥 − 1), or from 𝑆/𝑞 = (𝑍/𝑞)[𝑥]/( Φ𝑛 (𝑥)), into a byte array. The input parameters 

are integer ‘lgq’, representing lg(q), integer ‘n’, representing the ring degree, output byte array 

‘p’, an integer offset, ‘u’ the ring element to pack, and Boolean ‘sq’, which specifies whether to 

encode Sq(u) or Rq0(u). 

 

RSq_unpack: 

This method unpacks byte array ‘p’ into ‘u’ in 𝑆/𝑞 = (𝑍/𝑞)[𝑥]/( Φ𝑛 (𝑥)) or 𝑅/𝑞 =

 (𝑍/𝑞)[𝑥]/( 𝑥𝑛 − 1), in canonical form. The input parameters are integer ‘lgq’, representing 

lg(q), integer ‘n’, representing the ring degree, output array ‘u’ a ring element decoded from ‘p’ 

with centered coefficients, ‘p’ the byte array to unpack, an integer offset, and Boolean ‘sq’, 

which specifies whether to unpack into S/q, if sq is not equal to 0, or R/q, if sq is equal to 0. 
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Implementing the NTRU Class 

 

This class was implemented as per the method descriptions within the NTRU Algorithm 

Specifications and Supporting Documentation [2]. The RS2, RS3, and RSq Classes must be 

implemented prior to the implementation of this class. 

 

NTRU_param: 

This method includes all NTRU parameter pairs (n, lgq) with 𝑛  <   211 and 𝑞  <   212, such that 

2 and 3 are primitive mod n and ⌈(𝑛 +  3)/64⌉ is equal to ⌈𝑛/64⌉ and (3/8)  ∗  𝑛 ≤  𝑞/8 −

2 ≤  (2/3)  ∗  𝑛.  

 

NTRU_acceptable: 

This Boolean method is used to check that ring degree ‘n’, represented as an integer, is an 

acceptable ring degree to define R/q and S/q. It returns true if n is acceptable and false 

otherwise. A ring degree is acceptable if n is a prime, where 𝑛 <  211, and such that 2 and 3 are 

primitive mod n and ⌈(𝑛 +  3)/64⌉ is equal to ⌈𝑛/64⌉ and (3/8)  ∗  𝑛 ≤  𝑞/8 − 2 ≤  (2/3)  ∗

 𝑛.  

 

NTRU_parse: 

This method finds ‘n’ and ‘q’ such that packed_sq_bytes is the corresponding S/q element size 

in bytes. Input parameters include packed_sq_bytes, representing the ring element size in 

bytes, and output array lgq_ptr. The method returns the corresponding ring degree n, or 0 if 

not suitable ring exists for the size.  

 

NTRU_sample_hps: 

This method generates a pair of NTRU-HPS ternary vectors ‘u’ and ‘v’, each of degree at most 

𝑛 − 2, meaning they are in (𝑍/3)[𝑥]/( Φ𝑛 (𝑥)). This corresponds to Sample_fg and 

Sample_rm in the Round 2 written specification. The input parameters are integer ‘lgq’, 

representing lg(q), integer ‘n’, representing the ring degree, output arrays ‘u’ and ‘v’ 
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representing ternary vectors, output array ‘z’, and byte array uv_bits, which is a byte array of 

bit length sample_key_bits =  (8 +  30)  ∗  (𝑛 − 1) bits. 

 

DPKE_Sample_HPS: 

This method creates an NTRU-hps short lattice element (u, v) in packed form packed_uv, 

packed from a secret bit string uv_bits. The input parameters are integer ‘lgq’, representing 

lg(q), integer ‘n’, representing the ring degree, output byte array packed_uv of length 

dpke_plaintext_bytes, and byte array uv_bits, a bit string of bit length sample_key_bits =  (8 +

 30)  ∗  (𝑛 − 1) bits. 

 

DPKE_Public_Key: 

This method computes ‘h’, satisfying 𝑅𝑞(ℎ ∗  𝑓)  =  3 ∗  𝑔, and ‘h_q’ satisfying 𝑆𝑞(ℎ ∗

 ℎ_𝑞)  =  1. The input parameters are integer ‘lgq’, representing lg(q), integer ‘n’, representing 

the ring degree, _f and _g, elements of (𝑍/3)[𝑥]/( Φ𝑛 (𝑥)), and output arrays h and h_q, 

which are elements of (𝑍/𝑞)[𝑥]/( 𝑥𝑛 − 1). 

 

DPKE_Key_Pair: 

This method creates an NTRU-hps key-pair in packed form (packed_private_key, 

packed_public_key), where the packed_private_key is a byte array of length 

dpke_private_key_bytes and the packed_public_key is a byte array of length 

dpke_public_key_bytes. The input parameters are integer ‘lgq’ representing lg(q), integer ‘n’ 

representing the ring degree, byte array fg_bits, a bit string of bit length sample_key_bits =

 (8 +  30)  ∗  (𝑛 − 1) bits, and output byte arrays packed_private_key and packed_public_key. 

 

DPKE_Encrypt: 

This method encrypts an NTRU encapsulation pair with the NTRU deterministic public key 

encryption (DPKE) scheme. The input parameters are integer ‘lgq’ representing lg(q), integer ‘n’ 

representing the ring degree, packed_public_key, which is the target public key in packed form, 
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packed_rm, which is the NTRU encapsulation pair in standard packed form, and output byte 

array ‘packed_ciphertext of length dpke_ciphertext_bytes =  ⌈(𝑛 − 1)  ∗  𝑙𝑔𝑞/8⌉ bytes. 

 

DPKE_Decrypt: 

This method decrypts an NTRU cryptogram with the NTRU deterministic public key encryption 

(DPKE) scheme. The input parameters are integer ‘lgq’ representing lg(q), integer ‘n’ 

representing the ring degree, packed_private_key, which is the target private key in standard 

packed form, output byte array packed_rm of length dpke_plaintext_bytes, which is the NTRU 

encapsulation pair in standard packed form, and byte array packed_ciphertext, an NTRU 

cryptogram in standard packed form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

Results/Conclusion 

This research project resulted in a Java implementation of the latest version of the NTRU 

algorithm, an important candidate for post-quantum cryptography standardization. Multiple 

supporting functions and classes were built and described in detail, including methods for 

integer addition, integer multiplication, polynomial addition, polynomial multiplication, and 

modular reduction. Additionally, algorithm choices for the inversion and multiplication of 

polynomials, as well as those for achieving a cryptographically secure implementation were 

discussed. This background work allowed for the Java implementation of the NTRU algorithm in 

its entirety, which was described in a straight-forward manner and will be useful in future 

implementations. 

In building the Java implementation, one important security issue arose. Java does not 

allow for implicit conversion of certain types. For example, Java does not provide a way to cast 

Booleans to integers and vice versa. Subsequently, due to necessary conditional statements 

involved in these conversions, a secure implementation could be undermined. An attacker 

might potentially be alerted to the presence of secret information based on the time it takes to 

run one condition versus another [11] . Another complicating issue that arose in the 

implementation of this algorithm is the lack of pointers in Java. This means that one must be 

vigilant in keeping track of array offsets, which can be time-consuming and may introduce a lot 

of potential for errors.  

There are many opportunities to build on this implementation. To ensure further 

security, future implementations should attempt to clear all arrays and stored variables at the 

end of each function. Additionally, implementing the Toom-Cook algorithm for polynomial 

multiplication, though more complicated than implementing Karatsuba’s algorithm, could 

improve efficiency. This algorithm was not implemented due to time constraints of the project 

and because in previous Python and C implementations it was shown to only improve 

performance slightly. 
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Appendix 
 

Code example 1: Karatsuba multiplication in RS2 Class 
 

Example 1 is taken out of the RS2 Class, which focuses on binary polynomials. This example presents the 

simplest implementation of the Karatsuba algorithm within this project. Despite its comparative 

simplicity, it is important to note that one must be sure to calculate and implement the correct offsets in 

order for the overall cryptosystem to be effective. An incorrect offset in only one calculation would 

compromise the integrity (and readability) of the input message, causing the overall cryptosystem to 

become essentially useless. 
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Code example 2: Ternary Karatsuba multiplication in RSq Class  
 

This example offers an even deeper look into the challenge of implementing array offsets in Java. The 

example is taken from the RSq class because this class utilized the most offset-involving operations 

within the entire project. This method epitomizes the importance of paying vigilant attention to the 

offsets, as a small error could result in making the entire cryptosystem essentially unusable, as the 

encryption and decryption will not function properly.  
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